Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 3886-3888 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A design of an electron gun system is presented whose stray light emission is reduced by about three orders of magnitude compared to a regular low-energy electron diffraction gun. This is achieved by a combination of a BaO cathode run at rather low temperature and a 30° tandem parallel-plate analyzer used as an optical baffle. The system provides a high beam current of several microampers at 50 eV beam energy. The system can be used down to ∼10 eV. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 10030-10040 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In order to interpret the experimental results of the state resolved UV-laser-induced desorption of NO from NiO(100) (rotational and vibrational populations, velocity distributions of the desorbing NO molecules, etc.), we have performed ab initio complete active space self-consistent field (CASSCF) and configuration interaction (CI) calculations for the interaction potential between NO and the NiO(100) surface in the electronic ground state and for those excited states which are involved in the desorption process. The NiO(100)–NO distance and the tilt angle between the NO axis and the surface normal have been varied. A cluster model containing a NiO8−5-cluster embedded in a Madelung potential has been used for representing the NiO(100) surface. The excited states which are important for the desorption process, are charge transfer states of the substrate–adsorbate system, in which one electron is transferred from the surface into the NO-2π-orbital. The potential curves of these excited charge transfer states show deep minima (4 eV–5 eV) at surface/NO distances which are smaller than that in the ground state. The angular dependence of these potentials behaves similar as in the ground state. A semiempirical correction to the calculated excitation energies has been added which makes use of the bulk polarization of NiO. With this correction the charge transfer states are considerably stabilized. The lowest excitation energy amounts to about 4 eV which is in reasonable agreement with the onset of the laser desorption observed experimentally at about 3.5 eV. The density of the NO−-like states is rather high, so that probably several excited states are involved in the desorption process. The potential energy curves for all of these states are quite similar, but the transitions from the ground state into different excited charge transfer states show strongly differing oscillator strengths, which are also strongly dependent on the surface/NO distance. This fact is important for the dynamics of the deexcitation process in the sense of a selection criterion for the states involved. The magnitude of the oscillator strengths is large in comparison with the excitation of NO in the gas phase, which might be an indication for the possibility of optical excitation processes. One dimensional wave packet calculations on two potential energy curves using fixed lifetimes for the excited state in each calculation have been performed and enable us to estimate the mean lifetime of the excited state to be 15 fs≤τ≤25 fs. This implies that the dynamics of the system is dominated by the attractive part of the excited state potential. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 8615-8625 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have investigated the electron paramagnetic resonance (EPR) of self-assembled stearic acid films adsorbed on an Al2O3-film. Doping the film with spin labels at different positions of the alkyl chain in order to make the films accessible for EPR spectroscopy provides an opportunity to investigate the rotational motion of the molecule along the alkyl chain. The temperature dependent EPR spectra show a strong dependence of the rotational motion of the molecules with variation of the location of the spin label along the chain. We study the rotational motion by means of the EPR line shape analysis. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Functional magnetic resonance imaging (fMRI) was used to localize brain areas active during manipulation of complex objects. In one experiment subjects were required to manipulate complex objects for exploring their macrogeometric features as compared to manipulation of a simple smooth object (a sphere). In a second experiment subjects were asked to manipulate complex objects and to silently name them upon recognition as compared to manipulation of complex not recognizable objects without covert naming. Manipulation of complex objects resulted in an activation of ventral premotor cortex [Brodmann's area (BA) 44], of a region in the intraparietal sulcus (most probably corresponding to the anterior intraparietal area in the monkey), of area SII and of a sector of the superior parietal lobule. When the objects were covertly named additional activations were found in the opercular part of BA 44 and in the pars triangularis of the inferior frontal gyrus (BA 45). We suggest that a fronto-parietal circuit for manipulation of objects exists in humans and involves basically the same areas as in the monkey. It is proposed that area SII analyses the intrinsic object characteristics whilst the superior parietal lobule is related to kinaesthesia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Key words Parieto-premotor circuit ; Ventral premotor cortex ; Anterior intraparietal sulcus ; Object manipulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Functional magnetic resonance imaging (fMRI) was used to assess cerebral activation during manipulation of various complex meaningless objects as compared to manipulation of a single simple object (a sphere). Significant activation was found bilaterally in the ventral premotor cortex (Brodmann’s area 44), in the cortex lining the anterior part of the intraparietal sulcus (most probably corresponding to monkey anterior intraparietal area, AIP), in the superior parietal lobule and in the opercular parietal cortex including the secondary somatosensory area (SII). We suggest that the cortex lining the anterior part of the intraparietal sulcus and area 44 are functionally connected and mediate object manipulation in humans.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 128 (1999), S. 243-249 
    ISSN: 1432-1106
    Keywords: Key words Bimanual movements ; Mesial frontal cortex ; Supplementary motor area (SMA) ; Cingulate motor areas (CMA) ; Functional magnetic resonance imaging (fMRI)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In six healthy right-handed volunteers, we compared the cerebral activation pattern related to unimanual right- and left-hand movements and to bimanual in-phase and anti-phase movements using functional magnetic resonance imaging (fMRI). Internally paced unimanual finger-to-thumb opposition movements led to a strong contralateral activation of primary sensorimotor areas in all six subjects. Midline activity was lateralized to the left side during right-hand movements, but to both sides during left-hand movements. Activity patterns of bimanual in-phase movements resembled the combined activity patterns of the two unimanual conditions: right and left hemispheric activations of the primary sensorimotor cortices and predominantly left-sided medial frontal activity. In contrast, during anti-phase movements, we observed a clear increase in activity, in both right and left frontal midline areas and in right hemispheric, mainly dorsolateral premotor areas compared to in-phase movements. These results indicate that frontal midline activity is not specific for bimanual movements per se. It can already be involved during simple unimanual movements but becomes progressively more involved during more complex aspects of movement control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1459
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...