Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the present dual-probe microdialysis study the effects of intrastriatal perfusion with the tridecapeptide neurotensin(1–13) [NT(1–13)] and its active fragment NT(8–13) on striatopallidal GABA and striatal dopamine release were investigated. The modulatory action of NT(1–13) on D2 receptor-mediated inhibition of striatal and pallidal GABA release was also studied. Both intrastriatal NT(1–13) (100 nM) and NT(8–13) (100 nM) increased striatal (139 and 149% respectively) and pallidal (130 and 164%) GABA release, and this effect was antagonized by intrastriatal perfusion with the neurotensin receptor antagonist SR48692 (100 nM). A similar increase (155%) in striatal dopamine release was observed following intrastriatal NT(1–13) (100 nM), but not NT(8–13) (100 and 500 nM). However, at the highest concentration studied (1 μM) NT(8–13) was associated with a rapid increase (130%) in striatal dopamine release. In a second study intrastriatal NT(1–13) (10 nM) counteracted the inhibition of striatal and pallidal GABA release induced by pergolide (500 and 1500 nM). The inhibitory action of the D2 agonist was restored when SR48692 (100 nM) was added to the perfusion medium. These results suggest that in the neostriatum the neurotensin receptor located postsynaptically on the striatopallidal GABA neurons seems to differ from the neurotensin receptor located on dopaminergic terminals, as indicated by the relative lack of effect of NT(8–13) on striatal dopamine release. Furthermore, the ability of NT(1–13) to counteract the pergolide-induced inhibition of both striatal and pallidal GABA release strengthens the evidence for antagonistic receptor-receptor interaction between postsynaptic striatal neurotensin and D2 receptors located on striatopallidal GABA neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The present studies have examined whether the neuropeptide galanin can modulate brain serotoninergic (5-HT) neurotransmission in vivo and, particularly, 5-HT1A receptor-mediated transmission. For that purpose, we studied the ability of galanin (given bilaterally into the lateral ventricle, i.c.v.) to modify the impairment of passive avoidance retention induced by the selective 5-HT1A agonist 8-hydroxy-2-(di-n-propyloamino)tetralin (8-OH-DPAT) when injected prior to training. This impairment appears to be mainly related to activation of 5-HT1A receptors in the CNS. Galanin dose-dependently (significant at 3.0 nmol/rat) attenuated the passive avoidance impairment (examined 24 h after training) induced by the 0.2 mg/kg dose of 8-OH-DPAT. This 8-OH-DPAT dose produced signs of the 5-HT syndrome indicating a postsynaptic 5-HT1A receptor activation. Furthermore, both the impairment of passive avoidance and the 5-HT syndrome were completely blocked by the 5-HT1A receptor antagonist WAY 100635 (0.1 mg/kg). Galanin (0.3 or 3.0 nmol) or WAY 100635 (0.1 mg/kg) failed by themselves to affect passive avoidance retention. 8-OH-DPAT given at a low dose 0.03 mg/kg, which presumably stimulates somatodendritic 5-HT1A autoreceptors in vivo, did not alter passive avoidance retention or induce any visually detectable signs of the 5-HT syndrome. Galanin (0.3 or 3.0 nmol) given i.c.v. in combination with the 0.03 mg/kg dose of 8-OH-DPAT, did not modify passive avoidance. The immunohistochemical study of the distribution of i.c.v. administered galanin (10 min after infusion) showed a strong diffuse labelling in the periventricular zone (100–200 μm) of the lateral ventricle. Furthermore, in the dorsal and ventral hippocampus galanin-immunoreactive nerve cells appeared both in the dentate gyrus and the CA1, CA2 and CA3 layers of the hippocampus. In the septum only endogenous fibres could be seen while in the caudal amygdala also galanin-immunoreactive nerve cells were visualized far away from the labelled periventricular zone. At the level of the dorsal raphe nucleus a thin periventricular zone of galanin immunoreactivity was seen but no labelling of cells. These results suggest that galanin can modulate postsynaptic 5-HT1A receptor transmission in vivo in discrete cell populations in forebrain regions such as the dorsal and ventral hippocampus and parts of the amygdala. The indication that galanin administered intracerebroventrically may be taken up in certain populations of nerve terminals in the periventricular zone for retrograde transport suggests that this peptide may also affect intracellular events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Dual probe microdialysis was employed to characterize dialysate glutamate levels from the substantia nigra pars reticulata of awake freely moving rats, and to test its sensitivity to alterations in striatal neurotransmission including striatal N-methyl-d-aspartic acid (NMDA) receptor stimulation and blockade. Intranigral perfusion with low (0.1 mm) Ca2+ medium (60 min) did not affect nigral glutamate levels, whereas intranigral perfusion with tetrodotoxin (10 μm, 60 min) increased nigral glutamate levels. Perfusion of KCl (100 mm, 10 min) in the dorsolateral striatum transiently stimulated nigral glutamate levels (maximal increase + 60%), whereas intrastriatal perfusion (60 min) with low Ca2+ medium and tetrodotoxin gradually increased nigral glutamate levels. Intrastriatal perfusion with NMDA (0.1–100 μm, 10 min) dose-dependently stimulated glutamate levels in the substantia nigra pars reticulata. The NMDA (1 μm)-induced increase in nigral glutamate release was transient and maximal (+60% within 20 min), whereas that for NMDA (10 μm) had a slow onset but was long lasting (+35% after 60 min). Lower (0.1 μm) and higher (100 μm) NMDA concentrations were ineffective. The effect of intrastriatal NMDA (1 μm) was prevented by coperfusion with MK-801 (1 μm). Intrastriatal MK-801 (10 μm) alone gradually increased glutamate levels up to +50% after 60 min of perfusion. The present results suggest that glutamate levels in the substantia nigra pars reticulata are sensitive to changes in neuronal transmission in the dorsolateral striatum, and that striatal NMDA receptors regulate nigral glutamate release in both a tonic and phasic fashion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Many neurobiological functions have been ascribed to the NPY Y1 receptor subtype, but autoradiographic analysis has failed to detect Y1 binding sites in most human brain areas, in contrast to the rat. We examined the regional distribution of Y1 mRNA-containing cells in the post-mortem human brain to clarify if there is a major species difference in terms of the existence of Y1 receptors in the human telencephalon, in particular the striatum and cortex. In situ hybridization experiments revealed widespread distribution of Y1 mRNA signals in all layers of most limbic and neocortical regions, predominantly in layer IV (most cortical regions) and layer VI. The striatum showed moderate Y1 receptor mRNA expression levels with intensely expressing cells localized to the nucleus accumbens. The highest Y1 receptor mRNA expression was apparent within the dentate gyrus, and the lowest in the subiculum, parahippocampal gyrus, cerebellum, and thalamus. In vitro autoradiography using [125I]Leu31Pro34-PYY and [125I]PYY with NPY (13–36) or Leu31 Pro34 NPY; confirmed the presence of low Y1–like binding in the human brain despite abundant Y1 mRNA expression. However, using a rat model of the human autopsy process, it was apparent that the inability to reveal high Y1– versus Y2–like receptors in the human brain was related in part to marked reductions of Y1–like, but not Y2–like, receptors within a 4 h post-mortem delay. Altogether, the results indicate that the Y1 receptor gene is abundant in the human brain and this receptor may have important roles in cognitive, limbic and motor function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Adenosine A1 receptors antagonistically and specifically modulate the binding and functional characteristics of dopamine D1 receptors. In the striatum this interaction seems to take place in the GABAergic strionigro-strioentopeduncular neurons, where both receptors are colocalized. D1 receptors in the strionigro-strioentopeduncular neurons are involved in the increased striatal expression of immediate-early genes induced by the systemic administration of psychostimulants and D1 receptor agonists. Previous results suggest that a basal expression of the immediate-early gene c-fos tonically facilitates the functioning of strionigro-strioentopeduncular neurons and facilitates D1 receptor-mediated motor activation. The role of A1 receptors in the modulation of the expression of striatal D1 receptor-regulated immediate-early genes and the D1 receptor-mediated motor activation was investigated in rats with a unilateral lesion of the ascending dopaminergic pathways. The systemic administration of the A1 agonist N6-cyclopentyladenosine (CPA, 0.1 mg/kg) significantly decreased the number of contralateral turns induced by the D1 agonist SKF 38393 (3 mg/kg). Higher doses of CPA (0.5 mg/kg) were necessary to inhibit the turning behaviour induced by the D2 agonist quinpirole (0.1 mg/kg). By using in situ hybridization it was found that CPA (0.1 mg/kg) significantly inhibited the SKF 38393-induced increase in the expression of NGFI-A and c-fos mRNA levels in the dopamine-denervated striatum. The increase in jun-B mRNA expression could only be inhibited with the high dose of CPA (0.5 mg/kg). A stronger effect of the A1 agonist was found in the ventral striatum (nucleus accumbens) compared with the dorsal striatum (dorsolateral caudate-putamen). The results indicate the existence of antagonistic A1–D1 receptor–receptor interactions in the dopamine-denervated striatum controlling D1 receptor transduction at supersensitive D1 receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: By using in vivo microdialysis it was found that one of the main functions of striatal dopamine D1 receptors is to selectively facilitate GABAergic neurotransmission in the ‘direct’strioentopeduncular pathway. D1 receptors localized in the entopeduncular nucleus were also found to facilitate GABA release. However, results obtained from in vivo microdialysis, in vivo electrochemistry, immunohistochemistry and confocal laser microscopy suggested that entopeduncular D1 receptors could only be activated under pharmacological conditions. Adenosine A1 receptors were found to antagonistically modulate the D1-mediated regulation of the strioentopeduncular pathway. Furthermore, using in situ hybridization D1 and A1 receptors were shown to be colocalized in medium-sized striatal neurons. These results show that the strioentopeduncular neuron is a main locus for adenosine-dopamine interactions in the brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Release of the neurotransmitter dopamine in the mesolimbic system of the brain mediates the reinforcing properties of several drugs of abuse, including nicotine. Here we investigate the contribution of the high-affinity neuronal nicotinic acetylcholine receptor to the effects of nicotine ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 780 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6830
    Keywords: glucocorticoid receptors ; brain ; development ; development ; adulthood ; aging ; neurotrophic factors ; dopamine ; neurons ; astroglia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The mapping of glucocorticoid receptors (GR) in the rat central nervous system (CNS) has demonstrated their widespread presence in large numbers of nerve and glial cell populations also outside the classical stress regions. 2. The present paper summarizes the evidence that glucocorticoids via GR in the CNS can act as lifelong organizing signals from development to aging. The following examples are given. (a) In the prepubertal and adult offspring, prenatal corticosterone treatment can produce long-lasting changes in striatal dopaminergic communication. (b) In adulthood, the evidence suggests complex regulation by adrenocortical hormones of neurotrophic factors and their receptors in the hippocampal formation. (c) In aging, the strongly GR-immunoreactive pyramidal cell layer of the CA1 hippocampal area appears to be preferentially vulnerable to neurotoxic actions of glucocorticoids, especially in some rat strains. 3. Strong evidence suggests that each nerve cell in the CNS is supported by a trophic unit, consisting of other nerve cells and glial cells, blood vessels, and extracellular matrix molecules. Due to multiple actions on nerve and glial cell populations of the different trophic units, the glucocorticoids may exert either an overall trophic or a neurotoxic action. It seems likely that with increasing age, the endangering actions of glucocorticoids on nerve cells prevail over the neurotrophic ones, leading to reduced nerve cell survival in some trophic units.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...