Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Material
Years
Year
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Pharmacological and molecular biological studies provide evidence for subtypes of sodium-dependent high-affinity glutamate (Glu) transport in the mammalian CNS. At least some of these transporters appear to be selectively expressed in different brain regions or by different cell types. In the present study, the properties of l-[3H]Glu transport were characterized using astrocyte-enriched cultures prepared from cerebellum and cortex. In both brain regions, the kinetic data for sodium-dependent transport were consistent with a single site with Km values of 91 ± 17 µM in cortical glial cells and 66 ± 23 µM in cerebellar glial cells. The capacities were 6.1 ± 1.6 nmol/mg of protein/min in cortical glial cells and 8.4 ± 0.9 nmol/mg of protein/min in cerebellar glial cells. The potencies of ∼40 excitatory amino acid analogues for inhibition of sodium-dependent transport into glial cells prepared from cortex and cerebellum were examined, including compounds that are selective inhibitors of transport in synaptosomes prepared from either cerebellum or cortex. Of the analogues tested, 14 inhibited transport activity by 〉50% at 1 mM concentrations. Unlike l-[3H]Glu transport in synaptosomes prepared from cerebellum or cortex, there were no large differences between the potencies of compounds for inhibition of transport measured in glial cells prepared from these two brain regions. With the exception of (2S,1′R,2′R)-2-(carboxycyclopropyl)glycine and l-α-aminoadipate, all of the compounds examined were ∼10–200-fold less potent as inhibitors of l-[3H]Glu transport measured in glial cells than as inhibitors of transport measured in synaptosomes prepared from their respective brain regions. The pharmacology of transport measured in these glial cells differs from the reported pharmacology of the cloned Glu transporters, suggesting the existence of additional uncloned Glu transporters or Glu transporter subunits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We demonstrate by reverse transcriptase-polymerase chain reaction and Southern blotting that an immortalized rat oligodendroglial cell line (CG-4) expresses the non-N-methyl-d-aspartate (non-NMDA) glutamate receptor (GluR) genes GluR2–7, KA-1, and KA-2 and that nonimmortalized cells of the rat oligodendroglial lineage express the GluR1–3, GluR5–7, KA-1, and KA-2 genes. Lactic dehydrogenase release assays show that both immortalized and nonimmortalized cells of the oligodendroglial lineage are damaged by a 24-h exposure to 500 µM kainate or 5 mMl-glutamate, but not by a 24-h exposure to up to 10 mMα-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA). Damage is prevented by the non-NMDA GluR channel inhibitor 6-cyano-7-nitroquinoxaline-2,3-dione and is also averted if Ca2+ is removed from the culture medium. Cyclothiazide, which blocks desensitization of AMPA-preferring GluRs, increases cytotoxicity of kainate as well as inducing toxicity of AMPA. We conclude that cells of the oligodendroglial lineage express a population of AMPA-preferring and possibly also kainate-preferring GluR channels that are capable of mediating Ca2+-dependent excitotoxicity and that AMPA-induced cytotoxicity is blocked by desensitization of AMPA-preferring GluRs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...