Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 104 (1998), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The isoenzyme pattern and the substrate specificity of the membrane-bound mitochondrial and peroxisomal ascorbate peroxidases (APX; EC 1.11.1.11) from pea leaves are studied. The substrate specificity of both APXs was assayed using the electron donors ascorbate and pyrogallol, whereas o-dianisidine, hydroquinone, tetramethylbenzidine and 4-methoxy-α-naphthol were also assayed with mitochondrial APX (mitAPX). In leaf mitochondria, the specific activity of APX was similar with pyrogallol and ascorbate, the activity being inhibited by p-CMS. mitAPX showed low activity with the guaiacol peroxidase (GPX)-type substrates, tetramethylbenzidine and 4-methoxy-α-naphthol. Activity of mitAPX with hydroquinone suggest a potential role of mitAPX in the drainage of electrons from the mitochondrial electron chain at the level of ubiquinone. In peroxisomes, the APX (perAPX) specific activity was much higher with pyrogallol than with ascorbate. This perAPX was more sensitive to incubation with Triton X-100 than the mitAPX. By native PAGE the mitAPX was resolved in 6 isoenzyme bands, and the activity of the 3 main bands (mitAPX III, III′ and IV) was inhibited by p-CMS. These 3 major isozymes were also present in mitochondrial membrane fractions. Staining for GPX activity with 4-methoxy-α-naphthol revealed that the APX detected in mitochondria did not have the capacity to oxidize 4-MN, and therefore cannot be considered as true GPX. When intact peroxisomes and peroxisomal membranes were subjected to native PAGE, no APX activity could be detected and this was probably due to the inactivation of perAPX. Results obtained suggest that pea mitochondrial APX (mitAPX) represent a distinct and novel isozyme different from those APXs of chloroplast and cytosolic origin previously reported. The peroxisomal APX (perAPX), however, appears to ressemble the chloroplast APXs as regards its sensitivity to Triton X-100.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: ACC oxidase ; Ethylene ; Multigene family ; Differential expression ; Cucumis melo L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The enzyme ACC oxidase catalyses the last step of ethylene biosynthesis in plants, converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. We have previously described the isolation and characterization of a cDNA clone (pMEL1) encoding an ACC oxidase homolog from melon (Cucumis melo L.). Here we report the isolation and characterization of three genomic clones, corresponding to three putative members of the ACC oxidase gene family in melon. All are transcriptionally active. The sequences of these genes have been determined. One genomic clone (CM-ACO1), corresponding to the cDNA previously isolated, presents a coding region interrupted by three introns. Its transcription initiation site has been defined with RNA from ripe fruit and ethylene-treated leaves. The other two genes (CM-ACO2, CM-ACO3) have only two introns, at positions identical to their counterparts inCM-ACO1. The degree of DNA homology in the coding regions ofCM-ACO2 andCM-ACO3 relative toCM-ACO1 is 59% and 75%, respectively.CM-ACO2 andCM-ACO3 are 59% homologous in their coding regions. These three genes have close homology toPH-ACO3, a member of the ACC oxidase multigene family of petunia. The predicted amino acid sequences of CM-ACO1 and CM-ACO3 are 77% to 81% identical to those encoded by the tomato and petunia genes, while the deduced amino acid sequence ofCM-ACO2 shows only 42% to 45% homology. RT-PCR analysis using gene-specific primers shows that the three genes are differentially expressed during development, ethylene treatment and wounding.CM-ACO1 is induced in ripe fruit and in response to wounding and to ethylene treatment in leaves.CM-ACO2 is detectable at low level in etiolated hypocotyls.CM-ACO3 is expressed in flowers and is not induced by any of the stimuli tested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Key words ACC oxidase ; Ethylene ; Hypersensitive ; Response ; Senescence ; Transcriptional activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract ACC (1-aminocyclopropane-1-carboxylate) oxidase genes are differentially expressed in melon during development and in response to various stresses. We investigated the molecular basis of their transcription by analyzing the 5′ untranslated regions of the ACC oxidase genes CM-ACO1 and CM-ACO3. In order to determine how their temporal and spatial expression patterns were established, we fused the promoter regions of CM-ACO1 (726 bp) and CM-ACO3 (2260 bp) to the β-glucuronidase (GUS) reporter gene and examined their regulation in transgenic tobacco plants. The CM-ACO1 promoter was able to drive GUS expression in response to wounding, and to treatment with ethylene or copper sulfate. It was also rapidly induced (8–12 h post-inoculation) in tobacco leaves inoculated with the hypersensitive response (HR)-inducing bacterium Ralstonia solanacearum. Expression was also observed during compatible interactions but was delayed. In contrast, the CM-ACO3 promoter was not expressed in response to infection, but was up-regulated during flower development. Both promoters were regulated during leaf senescence but in different patterns. The CM-ACO1-driven GUS activity increased sharply concomitantly with the onset of chlorophyll breakdown, while the CM-ACO3 promoter drove strong GUS expression in green, fully expanded leaves and this declined at the onset of senescence. This result is consistent with the expression patterns of these two genes in senescent melon leaves. These data suggest that the regulation of expression of CM-ACO1 is related preferentially to stress responses, whereas CM-ACO3 seems to be associated with developmental processes. The possible role of ethylene is discussed, particularly in the regulation of the CM-ACO1 gene in response to stress and during senescence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...