Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0778
    Keywords: physiological regulator ; proliferation control ; regulated gene expression ; tumor suppressor ; IRF-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract We have attempted to establish a system in which cell proliferation is controlled by a physiological regulator. Interferon regulatory factor 1 (IRF-1) is a transcription factor that recognizes a sequence which is present in the interferon-β promoter as well as in the promoters of interferon-inducible genes. IRF-1 acts as a tumor suppressor. Constitutive overexpression of recombinant IRF-1 leads to inhibition of cell growth. The extent of this growth arrest depends on the intracellular concentration of IRF-1. In order to allow IRF-1 expression in various mammalian cells we have established two different systems for conditional IRF-1 transcription and activation, respectively. In one case, an inducible promoter, in the other case a fusion protein composed of IRF-1 and the hormone-binding domain of the human estrogen receptor was used. Both systems allow to control gradually the growth of mammalian cell lines by adjusting the intracellular concentration of IRF-1 via estradiol or tetracycline in the medium. Despite the activity of IRF-1 as an antiproliferative agent the expression of certain proteins is retained. Moreover, expression of genes which are controlled by IRF-1 responsive promoters is enhanced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: BHK-21 cells ; proliferation control ; IRF-1 ; productivity ; antibody
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Most cell lines that are used for the production of recombinant proteins proliferate spontaneously at a high rate. In many types of cultivation systems these cells still keep growing after having reached the desired cell density. Further proliferation in batch cultures leads to cell death as a consequence of nutrient and oxygen depletion as well as to accumulation of lactate and toxic products. Consequently, in many technical processes, the surplus of cells is removed. We have established cell lines in which proliferation is controlled by a physiological regulator, IRF-1. IRF-1 (Interferon Regulatory Factor 1) is a transcriptional activator and acts as a tumor suppressor. Constitutive overexpression of recombinant IRF-1 leads to inhibition of cell growth. The extent of this growth arrest depends on the intracellular concentration of active IRF-1. To allow IRF-1 expression in various mammalian cells a system for conditional IRF-1 activation has been established. A fusion protein composed of IRF-1 and the hormone binding domain of the human estrogen receptor, was used. This system allows to control gradually the growth of several mammalian cell lines by adjusting the intracellular concentration of active IRF-1 via estradiol in the medium. We have evaluated BHK-21 cells with respect to IRF-1 mediated cell growth inhibition and expression of two secreted proteins. Whereas the productivity of proliferation inhibited cells with respect to constitutively transcribed IgG genes is reduced, productivity of another secreted protein which is controlled by an IRF-1 inducible promoter is strongly enhanced under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...