Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 31 (1996), S. 1603-1608 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract It is well known that the existence of oxygen in the sintering of aluminium nitride (AIN) causes the degradation of thermal conductivity. To clarify the role of the oxygen, the effect of Al2O3 addition on the phase reaction of the AIN-Y2O3 system at high temperatures of 1900 and 1950°C was investigated. In the AIN-Al2O3 system, γ-AION and 27R polytypoid were formed at 1900 and 1950°C, respectively, and the ratio of each crystal increased with increasing Al2O3 content. The resultant phase was found to be in agreement with the phase diagram given by McCauley and Corbin. In the AIN-Y2O3 system, YAM phase or YAM plus unreacted Y2O3 were identified. Phase reaction in the AIN-Al2O3-2Y2O3 system was quite different from that of the AIN-Al2O3 system: namely, γ-AION and 27R coexisted even at 1950°C, which is inconsistent with McCauley and Corbin's diagram. It was confirmed by the dilatometric method and phase reaction data using some couples, that Al2O3 strongly affected the phase reaction in the AIN-Y2O3 system, indicating that the shrinkage of the Al2O3-doped specimen was initiated at somewhat lower temperatures. The grain morphology depended on the phase changes shown above, in which AIN and γ-AION were granular, and 27R polytypoid was plate-like.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 34 (1999), S. 4639-4644 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This study was performed to find the composition area of cubic spinel-type monophase oxides composed of the Mn–Co–Ni ternary system. Starting materials were prepared by mixing Mn, Co, and Ni nitrates then evaporating to dryness. Each starting oxide was fired at 700, 800, 900, 1000, and 1100 °C in air. The regions of cubic spinel monophase (CSM) were confirmed to spread with decreasing firing temperatures. The region of CSM at 1000 °C was seen near the line connecting the points of Mn : Co : Ni = 2 : 4 : 0 and 4.5 : 0 : 1.5. The area at 800 °C spread toward Co and Ni, as compared to the results at 1000 °C. In the region containing more Mn above the area of CSM at 800 °C, the phase had tetragonal spinel or α-Mn2O3 besides cubic spinel structure. Below this area, the phase contained rock-salt-type crystal besides cubic spinel structure. This tendency at 1000 °C was the same as that at 800 °C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The purpose of this study was to prepare a sintered body consisting of monophase cubic spinel type oxide, Mn1.5Co0.95Ni0.55O4, and to evaluate its electrical properties. It was found that cooling from 1400 to 1000 °C in nitrogen did not affect the preservation of the sintered rock salt type oxide formed at 1400 °C. A crack free sintered body of monophase cubic spinel may be obtained by heat treatment at 1000 °C in air, using a specimen cooled from 1400 °C at a rate of 500 °C min −1. A heat treatment time in air at 1000 °C of more than 48 h was required to convert the rock salt type structure into a perfect cubic spinel structure. The electrical conductivity, δ, of the sintered cubic spinel oxide synthesized in this work was found to be stable at 100 and 200 °C in air and at 100, 200 and 300 °C in nitrogen. The sintered spinel oxide was a p-type semiconductor, based on small polaron hopping conduction. The intrinsic hole concentration, n, was estimated to be constant, with a value of 1.6–1.8×1028m−3. The mobility, μ, increased exponentially with increasing annealing temperature in both atmospheres, suggesting that the change in δ is dependent on μ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...