Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 197 (1995), S. 583-591 
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Photoinhibition (photosynthesis) ; Photosynthetic gas exchange ; Photo-system II ; Tropical forest species ; Xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoinhibition of photosynthesis was studied in young (but almost fully expanded) and mature canopy sun leaves of several tropical forest tree species, both under controlled conditions (exposure of detached leaves to about 1.8 mmol photons·m-2·s-1) and in the field. The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence emission (FV/FM) and also by gas-exchange measurements. For investigations in situ, young and mature leaves with similar exposure to sunlight were compared. The results show a consistently higher degree of photoinhibition in the young leaves. In low light, fast recovery was observed in both types of leaves in situ, as well as in the laboratory. The fluorescence parameter 1 — FS/F′M (where FS = stationary fluorescence and f′M = maximum fluorescence during illumination) was followed in situ during the course of the day in order to test its suitability as a measure of the photosynthetic yield of photosystem II (PSII). Electron-transport rates were calculated from these fluorescence signals and compared with rates of net CO2 assimilation. Measurements of diurnal changes in PSII ‘yield’ confirmed the increased susceptibility of young leaves to photoinhibition. Calculated electron transport qualitatively reflected net CO2 uptake in situ during the course of the day. Photosynthetic pigments were analyzed in darkened and illuminated leaves. Young and mature leaves showed the same Chl a/b ratio, but young leaves contained about 50% less Chl a + b per unit leaf area. The capacity of photosynthetic O2 evolution per unit leaf area was decreased to a similar extent in young leaves. On a Chl basis, young leaves contained more α-carotene, more xanthophyll cycle pigments and, under strong illumination, more zeaxanthin than mature leaves. The high degree of reversible photoinhibition observed in these young sun leaves probably represents a dynamic regulatory process protecting the photosynthetic apparatus from severe damage by excess light.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...