Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 57 (1995), S. 1605-1626 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The rheological properties of polymer melts depend strongly on the underlying molecular structure: molecular weight distribution, and long chain branching. It is of considerable importance, both fundamental and practical, to relate the molecular architecture to polymer melt rheology. The focus of the present work is in extracting a measure of polydispersity from rheological data. Various polydispersity measures that have been proposed in the literature are critically examined and their limitations are pointed out. New measures of polydispersity are proposed that overcome these limitations. The evaluation of the various polydispersity measures is performed by reference to rheology fundamentals, with model calculations and examples drawn from industrial practice. The issues of eliminating molecular weight and temperature effects in characterizing polydispersity are comprehensively addressed. The presence of small levels of long chain branching in an otherwise linear polymer alters most of these measures of polydispersity dramatically, while no detectable change appears in the molecular weight distribution obtained using a gel permeation chromatograph. It is demonstrated that the polydispersity measures proposed in the present work, and which are extracted from frequency response data in the linear viscoelastic region, can be used reliably to characterize polydispersity in polymer melts. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...