Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 34 (1995), S. 4211-4219 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 7645-7651 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The use of electrostatic cutoffs in calculations of free energy changes by molecular dynamics or Monte Carlo simulation is known to introduce errors, which can be quite large when the net charge of the system is changed. The Born equation has often been used to correct for such errors, but this and other analytical methods cannot be used for many systems with complicated structures. Here, we show that numerical methods for solving the Poisson equation, which have been extensively developed recently for studies of solvation thermodynamics, provide a more generally applicable alternative to the traditional Born-type corrections. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 117 (1995), S. 10161-10162 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Pharmacology 37 (1997), S. 71-90 
    ISSN: 0362-1642
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Chemistry and Pharmacology
    Notes: Abstract Structure-based computational methods continue to enhance progress in the discovery and refinement of therapeutic agents. Several such methods and their applications are described. These include molecular visualization and molecular modeling, docking, fragment methods, 3-D database techniques, and free-energy perturbation. Related issues that are discussed include the use of simplified potential energy functions and the determination of the positions of tightly bound waters. Strengths and weaknesses of the various methods are described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1017
    Keywords: Hydrodynamic torques ; Enzyme-substrate association ; Ionic strength dependence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The effect of hydrodynamic torques on the association rate constants for enzyme-ligand complexation is investigated by Brownian dynamics simulations. Our hydrodynamic models of the enzyme and ligand are composed of spherical elements with friction forces acting at their centers. A quantitative measure of hydrodynamic torque orientational effects is introduced by choosing, as a reference system, an enzyme-ligand model with the same average hydrodynamic interactions but without orientational dependence. Our simple models show a 15% increase in the rate constant caused by hydrodynamic torques at physiological ionic strength. For more realistic hydrodynamic models, which are not computationally feasible at present, this effect is probably higher. The most important finding of this work is that hydrodynamic complementarity in shape (i.e. like the fitting together of pieces of a puzzle) is most effective for interactions between molecules at physiological ionic strength.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1017
    Keywords: Key words Poisson-Boltzmann model ; Protein kinases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Protonation equilibria of residues important in the catalytic mechanism of a protein kinase were analyzed on the basis of the Poisson-Boltzmann electrostatic model along with a cluster-based treatment of the multiple titration state problem. Calculations were based upon crystallographic structures of the mammalian cAMP-dependent protein kinase, one representing the so called closed form of the enzyme and the other representing an open conformation. It was predicted that at pH 7 the preferred form of the phosphate group at the catalytically essential threonine 197 (P-Thr197) in the closed form is dianionic, whereas in the open form a monoanionic ionization state is preferred. This dianionic state of P-Thr197, in the closed form, is stabilized by interactions with ionizable residues His87, Arg165, and Lys189. Our calculations predict that the hydroxyl of the Ser residue in the peptide substrate is very difficult to ionize, both in the closed and open structures of the complex. Also, the supposed catalytic base, Asp166, does not seem to have a pK a appropriate to remove the hydroxyl group proton of the peptide substrate. However, when Ser of the peptide substrate is forced to remain ionized, the predicted pK a of Asp166 increases strongly, which suggests that the Asp residue is a likely candidate to attract the proton if the Ser residue becomes deprotonated, possibly during some structural change preceding formation of the transition state. Finally, in accord with suggestions made on the basis of the pH-dependence of kinase kinetics, our calculations predict that Glu230 and His87 are the residues responsible for the molecular pK a values of 6.2 and 8.5, observed in the experiment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 41 (1997), S. 443-450 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We analyze the electrostatic and hydrodynamic properties of a nuclease from the pathogenic gram-negative bacterium Serratia marcescens using finite-difference Poisson-Boltzmann methods for electrostatic calculations and a bead-model approach for diffusion coefficient calculations.Electrostatic properties are analyzed for the enzyme in monomeric and dimeric forms and also in the context of DNA binding by the nuclease. Our preliminary results show that binding of a double-stranded DNA dodecamer by nuclease causes an overall shift in the charge of the protein by approximately three units of elementary charge per monomer, resulting in a positively charged protein at physiologic pH. In these calculations, the free enzyme was found to have a negative (-1 e) charge per monomer at pH 7. The most dramatic shift in pKa involves His 89 whose pKa increases by three pH units upon DNA binding. This shift leads to a protonated residue at pH 7, in contrast to the unprotonated form in the free enzyme. DNA binding also leads to a decrease in the energetic distances between the most stable protonation states of the enzyme. Dimerization has no significant effect on the electrostatic properties of each of the monomers for both free enzyme and that bound to DNA.Results of hydrodynamic calculations are consistent with the dimeric form of the enzyme in solution. The computed translational diffusion coefficient for the dimer model of the enzyme is in very good agreement with measurements from light scattering experiments. Preliminary electrooptical calculations indicate that the dimer should possess a large dipole moment (approximately 600 Debye units) as well as substantial optical anisotropy (limiting reduced linear electric dichroism of about 0.3). Therefore, this system may serve as a good model for investigation of electric and hydrodynamic properties by relaxation electrooptical experiments. © 1997 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0006-3525
    Keywords: diffusional encounter ; Brownian dynamics ; average Boltzmann factor ; acetylcholinesterase ; Poisson-Boltzmann ; electrostatics ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The utility of the average Boltzmann factor around the active site of an enzyme as the predictor of the electrostatic enhancement of the substrate binding rate is tested on a set of data on wild-type acetylcholinesterase and 18 charge mutants recently obtained by Brownian dynamics simulations. A good correlation between the average Boltzmann factors and the substrate binding rate constants is found. The effects of single charge mutations on both the Boltzmann factor and the substrate binding rate constant are modest, i.e., 〈5 fold increase or decrease. This is consistent with the experimental results of Shafferman et al. but does not support their suggestion that the overall rate of the catalytic reaction is not limited by the diffusional encounter of acetylcholinesterase and its substrate. © 1998 John Wiley & Sons, Inc. Biopoly 45: 355-360, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 25 (1996), S. 79-88 
    ISSN: 0887-3585
    Keywords: weighted masses ; molecular dynamics ; adenylate kinase ; domain movement ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The weighted masses molecular dynamics (WMMD) technique is applied to the protein adenylate kinase. A novel set of restraints has been developed to allow the use of this technique with proteins. The WMMD simulation is successful in predicting the flexibility of the two mobile domains of the protein. The end product of the simulation is similar to the known open and AMP bound forms of the enzyme. The biological relevance of the restraints used and potential methods of improving the technique are discussed. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The electrostatic steering of charged ligands toward the active site of Torpedo californica acetylcholinesterase is investigated by Brownian dynamics simulations of wild type enzyme and several mutated forms, in which some normally charged residues are neutralized.The simulations reveal that the total ligand influx through a surface of 42 Å radius centered in the enzyme monomer and separated from the protein surface by I-14 Å is not significantly influenced by electrostatic interactions. Electrostatic effects are visible for encounters with a surface of 32 Å radius, which is partially hidden inside the protein, but mostly within the solvent. A clear accumulation of encounter events for that sphere is observed in the area directly above the entrance to the active site gorge. In this area, the encounter events are increased by 40% compared to the case of a neutral ligand. However, the differences among the encounter rates for the various mutants considered here are not pronounced, all rate constants being within ±10% of the average value.The enzyme charge distribution becomes more important as the charged ligand moves toward the bottom of the gorge, where the active site is located. We show that neither the enzyme's total charge, nor its dipole moment, fully account for the electrostatic steering of ligand to the active site. Higher moments of the enzyme's charge distribution are also important. However, for a series of mutations for which the direction of the enzyme dipole moment is constant within a few degrees, one observes a gradual decrease in the diffusional encounter rate constant with the number of neutralized residues. On the other hand, for other mutants that change the direction of the dipole moment from that of the wild type, the calculated encounter rate constants can be very close to that of the wild type.The present work yields two new insights to the kinetics of acetylcholinesterase. First, evolution appears to have built a redundant electrostatic steering capability into this important enzyme through the overall distribution of its thousands of partially charged atoms. And second, roughly half of the rate enhancement due to electrostatics arises from steering of the substrate outside the enzyme; the other half of the rate enhancement arises from improved trapping of the substrate after it has entered the gorge. The computational results reproduce qualitatively, and help to rationalize, many surprising experimental results obtained recently for human acetylcholinesterase. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...