Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Maize plants were grown at 14, 18 and 20 °C until the fourth leaf had emerged. Leaves from plants grown at 14 and 18 °C had less chlorophyll than those grown at 20 °C. Maximal extractable ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was decreased at 14 °C compared with 20 °C, but the activation state was highest at 14 °C. Growth at 14 °C increased the abundance (but not the number) of Rubisco breakdown products. Phosphoenolpyruvate carboxylase (PEPC) activity was decreased at 14 °C compared with 20 °C but no chilling-dependent effects on the abundance of the PEPC protein were observed. Maximal extractable NADP-malate dehydrogenase activity increased at 14 °C compared with 20 °C whereas the glutathione pool was similar in leaves from plants grown at both temperatures. Foliar ascorbate and hydrogen peroxide were increased at 14 °C compared with 20 °C. The foliar hydrogen peroxide content was independent of irradiance at both growth temperatures. Plants grown at 14 °C had decreased rates of CO2 fixation together with decreased quantum efficiencies of photosystem (PS) II in the light, although there was no photo-inhibition. Growth at 14 °C decreased the abundance of the D1 protein of PSII and the PSI psaB gene product but the psaA gene product was largely unaffected by growth at low temperatures. The relationships between the photosystems and the co-ordinate regulation of electron transport and CO2 assimilation were maintained in plants grown at 14 °C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Mutation of the sid gene in Festuca pratensis prevents chlorophyll degradation. The senescing leaves retain their chlorophyll complement and stay green. Nevertheless, CO2 assimilation and ribulose-bisphosphate carboxylase/oxygenase content decline in both mutant and wild-type plants. Photosynthesis and chlorophyll a fluorescence measurements were performed in air and at low oxygen to prevent photorespiration. The maximum extractable activity of ribulose 1,5 bisphosphate carboxylase was higher in the senescent mutant leaves than in those of the wild-type control hut Mas much lower than that observed in the mature leaves of either genotype. The activation state of this enzyme was similar in mutant and wild-type lines at equivalent stages of development. Analysis of chlorophyll a fluorescence quenching with varying irradianco showed similar characteristics for mature leaves of the two genotypes. Genotypic variations in photosystem II (I'SII) efficiency were observed only in the senescent leaves. Photochemical quenching and the quantum efficiency of PSII were greater in the senescent mutant leaves than in (he wild type at a given irradiance. The calculated electron flux through PSII was substantially higher in the mutant with a greater proportion of electrons directed to photorespiration.Maximum catalytic activities of ascorbate peroxidase decreased in senescent compared to mature leaves of both genotypes, while glutathione reductase and monodehydroascorbate reductase were unchanged in both cases. Superoxide dismutase activity was approximately doubled and dehydroascorbate reductase activity was three times higher in senescent leaves compared with the mature leaves of both genotypes. In no case was there a difference in enzyme activities between mutant and wild type at equivalent growth stages. The pool of reduced ascorbate was similar in the mature leaves of the two genotypes, whereas it was significantly higher in the senescent leaves of the mutant compared with the wild type. Conversely, the hydrogen peroxide content was significantly higher in the mature leaves of the wild type than in those of the mutant, but in senescent leaves similar values were obtained. In leaves subjected to chilling stress the reduced ascorbate pool was higher in both mature and senescent leaves of the mutant than in their wild-type counterparts. Similarly, the hydrogen peroxide pool was significantly lower in both mature and senescent leaves of the mutant than in the wild type. We conclude that, in spite of deceased CO2 assimilation, the mutant is capable of high rates of electron Slow. The high ascorbate/hydrogen peroxide ratio observed in the mutant, particularly at low temperatures, suggests that the senescent leaves are not subject to enhanced oxidative stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...