Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Developmental gene expression ; H+/sucrose symporter ; P-type H+-ATPase ; Sucrose-binding protein ; Transfer cells ; Vicia faba ; Cotyledons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Dry-matter accumulation by developing cotyledons of grain legumes includes a mandatory influx of photoassimilates, largely in the form of sucrose, from the seed apoplasm across the plasma membranes of the cotyledon cells. This study examined the temporal and spatial expression of an H+/sucrose symporter, a P-type H+-ATPase, and a sucrose-binding protein (SBP) in cotyledons ofVicia faba L. throughout their development. The flux of dry matter and sucrose symporter activity exhibited identical temporal trends. These were a marked increase during cotyledon expansion to a plateau maintained until cotyledon maturity. Thereafter both parameters declined precipitously. The temporal changes in sucrose symporter activity were accounted for by shifts in its Vmax. Transcript levels of the H+/sucrose symporter followed a similar temporal pattern to the sucrose symporter activity suggesting regulation by gene expression. Equivalent conclusions were drawn for SBP and the H+-ATPase expression during cotyledon expansion. Thereafter, during seed filling, the transcript levels of SBP and H+-ATPase did not closely follow that found for the sucrose symporter. A progressive wave of gene expression in the abaxial epidermal cells spread from the cotyledon region juxtaposed to the non-vascular region of the seed coat at the pole distal from the funicle. The pattern of expression progressed most rapidly along the median longitudinal plane of the cotyledons and more slowly outward to their margins. The densities of SBP and H+-ATPase, inserted into the plasma membranes of the abaxial epidermal cells, increased throughout cotyledon expansion. Gene expression (sucrose symporter) and membrane insertion of the gene products (SBP, H+-ATPase) were closely associated with the initiation and development of wall ingrowths in the abaxial epidermal cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Gene expression ; Plasma membrane transport ; Seed ; Sucrose efflux/influx ; Transfer cells ; Vicia faba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In developing seeds ofVicia faba, transfer cells line the inner surface of the seed coat and the juxtaposed epidermal surface of the cotyledons. Circumstantial evidence, derived from anatomical and physiological studies, indicates that these cells are the likely sites of sucrose efflux to, and influx from, the seed apoplasm, respectively. In this study, expression of an H+/sucrose symporter-gene was found to be localised to the epidermal-transfer cell complexes of the cotyledons. The sucrose binding protein (SBP) gene was expressed in these cells as well as in the thin-walled parenchyma transfer cells of the seed coat. SBP was immunolocalised exclusively to the plasma membranes located in the wall ingrowth regions of the transfer cells. In addition, a plasma membrane H+-ATPase was most abundant in the wall ingrowth regions with decreasing levels of expression at increasing distance from the transfer cell layers. The observed co-localisation of high densities of a plasma membrane H+-ATPase and sucrose transport proteins to the wall ingrowths of the seed coat and cotyledon transfer cells provides strong evidence that these regions are the principal sites of facilitated membrane transport of sucrose to and from the seed apoplasm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...