Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
  • 1985-1989  (1)
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Drugs that inhibit RNA or protein synthesis are known to affect some functional properties of axons. In this context, we studied the ultrastructural effects of actinomycin-D, an inhibitor of RNA synthesis, and cycloheximide and emetine, inhibitors of protein synthesis, in rat sural nerves. A silicone sleeve (4 mm long) loaded with drug was placed around the nerves and left for about a week. The ultrastructural alterations of axons and Schwann cells progressed over this period. After cycloheximide and emetine, the cytoplasm of Schwann cells was enlarged and the rough endoplasmic reticulum was prominent. After actinomycin-D, the Schwann cells reached the stage of lysis. Nonmedullated were more affected than myelinated axons. After cycloheximide and emetine, the axoplasmic matrix decreased substantially but reversibly. Microtubules of nonmedullated fibres decreased by about 50%. Actinomycin-D determined sprouting of axons and a rise of axonal microtubules; in nonmedullated axons, the normal inverse correlation between microtubular density and calibre gave way to a high and constant density for all axonal sizes. A few millimetres proximal and distal to the sleeve, the nerve tissue and the axonal microtubular content were close to normal, i.e. the effects of drugs were local. Present results suggest that the local turnover of amino acids in the axon is necessary to maintain the integrity of microtubule and neurofilament proteins. We propose that the Schwann cell down-regulates the axonal cytomatrix.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    American Journal of Anatomy 172 (1985), S. 291-306 
    ISSN: 0002-9106
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The fine structure of the rat parietal cell was studied, both at rest and after stimulation by refeeding or insulin administration. Experiments on fixation procedures showed that whenever the fixative contained sucrose at a concentration higher than 0.2 M, the system of cytoplasmic membranes was clearly tubular in arrangement, whereas the omission of sucrose in the fixative usually resulted in a vesicular structure. The study with the high-voltage electron microscope of thick sections prepared by conventional techniques or by impregnation with zinc iodide-osmium (ZIO) revealed that the tubules are grouped into fascicles, and that these form a feltwork that is especially thick toward the cell apex. The development of the secretory canaliculus after stimulation appears to take place by an in situ remodeling of the cytoplasmic domain occupied by the tubular system. Cells examined after short periods of stimulation (5-15 min) showed images of the tubular system and of the canalicular structure which differed both from the nonstimulated and from the fully active (30-45 min of stimulation) cell. These features include the formation of wide cisternae and of pericanalicular cytoplasmic trabeculae or laminae, whose fine structure bears close resemblance to that of the intracanalicular processes in the same cells. These images can be ordered into a hypothetical sequence which is proposed as a model to explain the transformation of the tubular system and intervening cytoplasmic matrix into secretory canaliculus.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...