Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1615-6102
    Keywords: Meiosis ; Microtubules ; Polarity ; Ultrastructure ; Mosses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An extensive system of microtubules develops during meiotic prophase in the mossRhynchostegium serrulatum (Hedw.)Jaeg. &Sauerb. Development of the cytoskeleton can be traced to early prophase when the nucleus is acentric and the single plastid divides into four plastids. The cytoskeletal microtubules are associated with equidistant positioning of the four plastids at the distal tetrad poles and with migration of the nucleus to a central position in the sporocyte. The cytoskeleton, which interconnects plastids and encloses the nucleus, contributes to the establishment of moss sporocyte polarity. Just prior to metaphase I evidence of the prophase cytoskeleton is lost as the bipolar metaphase I spindle develops in association with discrete polar organizers located in opposite cleavage furrows between plastids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 106 (1981), S. 273-287 
    ISSN: 1615-6102
    Keywords: Microtubules ; Polarity ; Spore development ; Trematodon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Young spores of the mossTrematodon longicollis Mx. are highly polar. Immediately after meiotic cytokinesis an extensive system of microtubules associated with the single plastid develops under the entire distal face. Following exine initiation on the distal surface a microtubule system is elaborated at the site of aperture development on the proximal surface. Both plastid and nucleus move from distal to proximal pole and are attached to microtubules of the proximal system. Microtubules underlie the plasma membrane as it withdraws from the exine in the initiation of both the surrounding annulus and central aperture pore. The central pore enlarges to form a bowl-shaped concavity in which a fibrillar plug develops basipetally. The annulus expands into a fibrillar-filled protrusion surrounding the central pore. The mature aperture consists of a central pore plug covered by a thin roof of exine and separated from the surrounding annulus by exine lamellae. The aperture of the mature spore is obscured by development of the ornate exine and is not a prominent feature of the mature spore surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 165 (1991), S. 155-166 
    ISSN: 1615-6102
    Keywords: Cytokinesis ; F-actin ; Microsporogenesis ; Microtubules ; Orchids ; Phragmoplast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cytokinesis in microsporocytes of moth orchids is unusual in that it occurs simultaneously after meiosis, the cytoplasm does not infurrow in the division planes, and cell plates are deposited in association with centrifugal expansion of phragmoplasts. Microtubules radiating from the nuclear envelopes appear to be of fundamental importance in establishment of division planes. Primary interzonal spindles develop between sister nuclei and interaction of radial microtubules triggers development of secondary interzonal spindles between non-sister nuclei. From three to six or more phragmoplasts, depending upon the arrangement of nuclei in the coenocyte, develop from these postmeiotic arrays. The phragmoplasts consist of co-aligned microtubules and F-actin organized into bundles that are broad proximal to the mid-plane and taper distally. Ultrastructure of the phragmoplast/cell plate reveals that abundant ER is associated with vesicle aggregation and coalescence. Cell plates are deposited in association with phragmoplasts as they expand centrifugally to join the parental wall and/or fuse with one another in the interior of the cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 116 (1983), S. 115-124 
    ISSN: 1615-6102
    Keywords: Microtubules ; Moss ; MTOC ; Sporogenesis ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microtubule systems appear sequentially at the distal and proximal poles of tetrad members during mid-sporogenesis in the mossTetraphis pellucida Hedw. The distal microtubule system emanates from a microtubule organizing center (MTOC) located between the single plastid and the nucleus. The distal MTOC and associated microtubules, which appear immediately after cytokinesis, are ephemeral and do not appear to be associated with the deposition of exine occuring at the same time. The proximal microtubule system, which appears slightly later than the distal system, is a more stable component of mid-sporogenesis. The proximal MTOC is an irregularly lobed, patelliform aggregation of electron-dense granules located beneath the plasma membrane at the proximal spore pole. Several bundles of microtubules radiate from the proximal MTOC and traverse the cell, enclosing the nucleus in an cone of microtubules. The proximal microtubule system is thought to function in aperture development and organelle migration. The relatively large nucleus migrates a short distance in the small spore early in the tetrad stage and maintains its acentric position at the proximal pole throughout later stages of sporogenesis. The plastid migrates later in the tetrad stage from its meiotic position parallel to the distal surface to a position perpendicular to the distal surface with one tip in close proximity to the proximal MTOC. The proximal microtubule system reaches its maximum development by the end of the tetrad stage and all micrographic evidence of it is lost in the maturation stages of late sporogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1615-6102
    Keywords: Meiotic cytokinesis ; Microsporogenesis ; Microtubules ; Orchids ; Phragmoplast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cytokinetic apparatus in microsporogenesis lacks a preprophase band of microtubules and the selection of cytokinetic planes is dependent upon disposition of nuclei which define cytoplasmic domains via post-meiotic radial systems of microtubules. Meiotic cytokinesis was investigated in hybrid moth orchids (Phalaenopsis) exhibiting irregular patterns of cytokinesis. In these polliniate orchids, spindle orientation is imprecise, and the tetrad nuclei (therefore the microspores) may be in rhomboidal, tetrahedral or linear arrangement. The hybrid “Sabine Queen” (section Phalaenopsis) regularly undergoes simultaneous cytokinesis, as is common in orchids. The hybrid “Vista Rainbow” (section Amboinenses) produces either a complete dyad wall, a partial wall, or no wall after first nuclear division. In all cases, a first division phragmoplast is initiated in the interzonal region and expands centrifugally into the peripheral cytoplasm. Fluorescence microscopy shows that the phragmoplast consists of fusiform bundles of microtubules and Factin bisected by a non-fluorescent zone. If a cell plate fails to form, a band of organelles polarized in the equatorial region effectively divides the cell into two domains. The organelles disperse when a dyad wall is complete, but tend to remain polarized around an incomplete wall. In four-nucleate coenocytes, the usual interzonal microtubules between sister nuclei (primary) form slightly in advance of secondary arrays between non-sister nuclei. Phragmoplasts are initiated in sites defined by the post-meiotic microtubule arrays.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 167 (1992), S. 183-192 
    ISSN: 1615-6102
    Keywords: Endoplasmic reticulum ; F-actin ; Microtubules ; Orchids ; Pollen ; Mitosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The unequal first mitosis in pollen ofPhalaenopsis results in a small generative cell cut off at the distal surface of the microspore and a large vegetative cell. No preprophase band of microtubules is present, but polarization of the microspore prior to this critical division is well marked. A generative pole microtubule system (GPMS) marks the path of nuclear migration to the distal surface, and the organelles become unequally distributed. Mitochondria, plastids and dictyosomes are concentrated around the vegetative pole in the center of the microspore and are almost totally excluded from the generative pole. The prophase spindle is multipolar with a dominant convergence center at the GPMS site. The metaphase spindle is disc-shaped with numerous “minipoles” terminating in broad polar regions. In anaphase, the spindle becomes cone-shaped as the spindle elongates and the vegetative pole narrows. These changes in spindle architecture are reflected in the initial shaping of the telophase chromosome groups. F-actin is coaligned with microtubules in the spindle and is also seen as a network in the cytoplasm. An outstanding feature of orchid pollen mitosis is the abundance of endoplasmic reticulum (ER) associated with the spindle. ER extends along the kinetochore fibers, and the numerous foci of spindle fibers at the broad poles terminate in a complex of ER.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 167 (1992), S. 123-133 
    ISSN: 1615-6102
    Keywords: Confocal ; Isoetes ; Microtubule ; Mitosis ; Monoplastidy ; Plastid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mitosis in monoplastidic root tip cells ofIsoetes was studied by fluorescence (confocal laser scanning microscopy) and transmission electron microscopy. The two major components of division polarity, spindle axis and division site, are established more or less simultaneously in preprophase. Morphogenetic plastid migration results in positioning of a daughter plastid at each pole of the future spindle. Concomitant with establishment of the spindle axis, the division site is marked by a girdling band of mirotubules (preprophase band). Endoplasmic microtubules interconnect the polar plastids and preprophase band suggesting a mechanism for communication and final alignment of spindle axis and division site. As in other monoplastidic cells, the spindle appears to emanate from the plastids. In telophase, the focus of microtubules shifts to the reforming nuclei as the phragmoplast is initiated. Microtubules which continue to emanate from plastids are incorporated into the phragmoplast as it expands beyond the interzonal region. Cortical microtubules are restored in a random fashion before assuming a transverse arrangement in interphase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1615-6102
    Keywords: Microtubules ; Mitosis ; Plastids ; Preprophase Band ; Isoetes ; Selaginella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ultrastructural observations on monoplastidic root tip cells ofIsoetes andSelaginella demonstrate two important phenomena associated with preprophasic preparation for mitotic cell division, 1. the preprophase band and 2. precise orientation of the dividing plastid relative to the preprophase band. Both of these phenomena accurately predict the future plane of cell division. The plastid divides in a plane parallel to the spindle and each cell inherits a single plastid which caps the telophase nucleus. When succesive transverse divisions occur, the plastid migrates prior to prophase from a position near an old transverse wall to a lateral position in the cell. The plastid is oriented with its median constriction precisely intersected by the plane of the preprophase band. When a longitudinal division follows a transverse division, the plastid remains in its position adjacent to an old transverse wall where it is bisected by the plane of the longitudinally oriented preprophase band microtubules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1615-6102
    Keywords: Bryophytes ; Preprophase band ; Microtubules ; Mitotic apparatus ; Microtubule organizing center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 161 (1991), S. 168-180 
    ISSN: 1615-6102
    Keywords: Microsporogenesis ; Microtubules ; Mitotic apparatus ; Plastid polarity ; Selaginella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microsporogenesis inSelaginella was studied by fluorescence light microscopy and transmission electron microscopy. As in other examples of monoplastidic meiosis the plastids are involved in determination of division polarity and organization of microtubules. However, there are important differences: (1) the meiotic spindle develops from a unique prophase microtubule system associated with two plastids rather than from a typical quadripolar microtubule system associated with four plastids; (2) the division axes for first and second meiotic division are established sequentially, whereas as in all other cases the poles of second division are established before those of first division; and (3) the plastids remain in close contact with the nucleus throughout meiotic prophase and provide clues to the early determination of spindle orientation. In early prophase the single plastid divides in the plane of the future division and the two daughter plastids rotate apart until they lie on opposite sides of the nucleus. The procytokinetic plate (PCP) forms in association with the two slender plastids; it consists of two spindle-shaped microtubule arrays focused on the plastid tips with a plate of vesicles at the equatorial region and a picket row of microtubules around one side of the nucleus. Second plastid division occurs just before metaphase and the daughter plastids remain together at the spindle poles during first meiotic division. The meiotic spindle develops from merger of the component arrays of the PCP and additional microtubules emanating from the pair of plastid tips located at the poles. After inframeiotic interphase the plastids migrate to tetrahedral arrangement where they serve as poles of second division.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...