Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • 1975-1979
  • 1970-1974
  • aromatic L-amino acid decarboxylase  (2)
  • 1-methyl-4-phenylpyridinium ion  (1)
  • Fetal brain  (1)
  • 1
    ISSN: 1435-1463
    Keywords: Tyrosine hydroxylase ; aromatic L-amino acid decarboxylase ; Parkinson's disease ; schizophrenia ; RT-PCR ; mRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Using the reverse transcription-polymerase chain reaction (RT-PCR), we developed a sensitive and quantitative method to detect all four types of human tyrosine hydroxylase (TH) mRNAs in the human brain (substantia nigra). All four types of TH mRNAs were found in the substantia nigra in the control brains examined, and the ratio of type-1, type-2, type-3, and type-4 mRNAs to the total amount of TH was 45, 52, 1.4, and 2.1%, respectively. The average amount of total TH mRNA in the normal brain (substantia nigra) was 5.5 amol of TH mRNA per μg of total RNA. The ratios of four TH isoforms were not altered significantly in Parkinson's disease or schizophrenia. Further we measured the relative amount of aromatic L-amino acid decarboxylase (AADC) and β-actin mRNAs in the brain samples. TH and AADC mRNAs were highly correlated in the control cases. We found that parkinsonian brains had very low levels of all four TH isoforms and AADC mRNAs in the substantia nigra compared with control brains, while no significant differences were found between schizophrenic brains and normal ones. Since the decrease in AADC mRNA was comparable to that in TH mRNA, the alteration of TH in Parkinson's disease would not be a primary event, but it would reflect the degeneration of dopaminergic neurons in the substantia nigra. This is the first reported measurement of mRNA contents of TH isoforms and AADC in Parkinson's disease and schizophrenia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1463
    Keywords: Fetal brain ; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; 1-methyl-4-phenylpyridinium ion ; catecholamine ; indoleamine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of a dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the amounts of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were examined in the whole brains of fetal mice and maternal mice after its administration to pregnant mice. DA and DOPAC concentrations were decreased significantly in both the fetal and maternal brains. At 3 hr after injection, reduction of the DOPAC concentration was more marked than that of DA in both the fetal and maternal brains. Increase of 5-HT concentration was observed until 12 hr after injection in the fetal brains and 6 hr in the maternal brains. These results indicate that 1-methyl-4-phenyl-pyridinium ion (MPP+) and MPTP affect the levels of catechol- and indoleamines in the brain of premature stage as well as in the mature brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1463
    Keywords: Transgenic mice ; tyrosine hydroxylase promoter ; chloramphenicol acetyltransferase ; aromatic L-amino acid decarboxylase ; ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have produced transgenic (Tg) mice carrying 5.0-kb fragment from the 5′-flanking region of the human tyrosine hydroxylase (hTH) gene fused to a reporter gene, chloramphenicol acetyltransferase (CAT) [Sasaoka et al. (1992) Mol Brain Res 16: 274–286]. In the brain of the Tg mice, CAT expression has been observed in catecholaminergic (CAnergic) neurons and also in non-CAnergic neurons. The aim of the present study is to examine in detail the cell-type specific expression of the hTH-CAT fusion gene in the brain of the Tg mice, by use of immunohistochemistry for CAT, TH, and aromatic L-amino acid decarboxylase (AADC). CAT-immunoreactive cells were found in CAnergic brain regions which contained TH-positive cells, and also in non-CAnergic brain regions which contained no TH-labeled cells. The non-CAnergic brain regions that represented CAT-stained cells were further divided into two groups: (i) regions containing AADC-labeled cells, for example, bed nucleus of the stria terminalis, nucleus suprachiasmaticus, mammillary body, nucleus raphe dorsalis, inferior colliculus, and nucleus parabrachialis, and (ii) regions containing no AADC-positive cells, for example, main olfactory bulb (except A16), accessory olfactory bulb, nucleus olfactorius anterior, caudoputamen, septum, nucleus accumbens, hippocampus, medial nucleus of the amygdala, entorhinal cortex, nucleus supraopticus, and parasubiculum. The results indicate that the 5.0-kb DNA fragment flanking the 5′ end of the hTH gene may contain the element(s) specific for neuron-specific TH expression but which may be insufficient to attenuate ectopic expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...