Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
  • 1975-1979
  • E. coli  (2)
  • parasitic angiosperm  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 63 (1992), S. 85-93 
    ISSN: 1573-5060
    Keywords: breeding for resistance ; cowpea ; parasitic angiosperm ; resistance mechanisms ; sorghum ; Striga ; Vigna unguiculata ; Sorghum bicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Striga species are parasitic angiosperms that attack many crops grown by subsistence farmers in sub-Saharan Africa and India. Control of the parasite is difficult and genetically resistant crops are the most feasible and appropriate solution. In cowpea, complete resistance toStriga gesnerioides has been identified. Breeding for resistance in sorghum has identified varieties with good resistance toS. asiatica in Africa and India. One variety was also resistant toS. hermonthica in W. Africa. No such resistance toStriga has been found in maize or millets. Resistant varieties have usually been sought by screening germplasm in fields naturally infested withStriga. However, laboratory techniques have also been developed, including anin vitro growth system used to screen cowpeas for resistance toS. gesnerioides. Two new sources of resistance in cowpea have been identified using the system. The technique has also been used to investigate the mechanisms of resistance in this crop. Two mechanisms have been characterised, both were expressed after penetration of cowpea roots by the parasite. The resistance of some sorghum varieties toStriga is controlled by recessive genes. In cowpea, resistance toStriga is controlled by single dominant genes. The genes for resistance are currently being transferred to cowpea varieties which are high yielding or adapted to local agronomic conditions. OneStriga resistant cowpea variety, Suvita-2, is already being grown widely by farmers in Mali. Reports of ‘breakdown’ of resistance in cowpea toStriga have not yet been confirmed, but a wider genetic base to the resistance is essential to ensure durability ofStriga resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: Striga gesnerioides ; Vigna unguiculata ; cowpea ; parasitic angiosperm ; breeding for resistance ; parasite variation ; races
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An in vitro growth system was used to determine the virulence of two samples of Striga gesnerioides from Zakpota in southern Benin. Cowpea variety B301, previously considered resistant to all races of S. gesnerioides, was susceptible to both samples of the parasite. Two other cowpea varieties, 58–57 and IT81D-994, were totally resistant. Resistance in 58–57 was associated with a hypersensitive necrosis of infected roots, whilst IT81D-994 supported production of small S. gesnerioides tubercles with stems which failed to develop. Striga gesnerioides from southern Benin is the fourth race of the parasite to be identified, and the first with virulence on variety B301. The implications for breeding cowpeas with resistance to S. gesnerioides are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 59-65 
    ISSN: 0006-3592
    Keywords: pet operon ; E. coli ; metabolic fluxes ; metabolic engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fermentation patterns of Escherichia coli HB101 carrying plasmids expressing cloned genes of Zymomonas mobilis pyruvate decarboxylase (PDC) and alcohol dehydrogenase li (ADH) were determined in glucose-limited complex medium in pH-controlled anaerobic batch cultivations. Time profiles of glucose, dry cell weight, succinate, formate, acetate, and ethanol were determined, as were the activities of ADH and PDC. Fluxes through the central carbon pathways were calculated for each construct utilizing exponential phase data on extracellular components and assuming quasi-steady state for intermediate metabolites. Overall biomass yields were greatest for cells expressing both PDC and ADH activities. Yields of carbon catabolite end products were similar for all PDC-expressing strains and different from those for other strains. Relative to its glucose uptake rate, the strain with greatest PDC and ADH activities produces formate and acetate more slowly and ethanol more rapidly than other strains. Strong influences of plasmid presence and metabolic coupling complicate detailed interpretations of the data.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 1318-1324 
    ISSN: 0006-3592
    Keywords: glucose metabolism ; pet operon ; E. coli ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The glucose metabolism of an Escherichia coli strain bearing mutations abolishing both acetyl phosphotransferase (PTA) and acetate kinase (ACK) activities was studied under aerobic and anaerobic conditions. These studies were conducted in a complex medium with the mutant carrying no plasmid, the mutant carrying the common cloning vector pUC19, and the mutant carrying a plasmid bearing the “pet” operon that encodes Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase activities. The mutant carrying no plasmid showed lower specific growth and glucose uptake rates relative to the parent wild-type strain (K-12), Lactic acid was produced at higher levels than the wild type, and considerable amounts of pyruvic acid were secreted as an unusual byproduct. Analysis of other fermentation products showed low but significant amounts of acetic acid, no accumulation of formic acid, and lower secretion of succinate and ethanol. The maintenance of the plasmid pUC19 in the mutant negatively affected metabolism. Expression of the pet operon overcame the metabolic stress caused by the plasmid, enhancing growth and glucose uptake rates to the values observed in the plasmidfree mutant. Also, expression of the pet operon allowed consumption of pyruvate accumulated during the first hours of fermentation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...