Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • 1975-1979
  • Saccades  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 84 (1991), S. 35-46 
    ISSN: 1432-1106
    Keywords: Vestibulo ; ocular reflex ; Saccades ; Adaptation ; Vestibular perception ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary When a normal human subject is briefly turned in total darkness while trying to “look” at a spatially fixed target, the vestibulo-ocular reflex (VOR) produces slow-phase compensatory eye movements tending to hold the eyes on target. However, slow-phase compensation per se is generally inadequate in these circumstances. Nevertheless it has recently been found, that even in the dark, this inadequacy tends to be corrected by supplementary saccades usually acting in the compensatory direction. The present study further investigates this phenomenon by measuring the respective contributions of saccadic, slow-phase and overall net compensation in 9 subjects tested before and after 30% adaptive attenuation of VOR slow-phase gain. In each test series, subjects attempted to stabilize their gaze on a previously seen target during each of 40 brief (≈0.5 s) whole body rotations (40°/s, 20° amp) conducted in complete darkness. The adaptive experience comprised 2 h of full-field visual suppression of the VOR during sinusoidal rotation of subject and surround at 1/6 Hz and 40°/s velocity amplitude. Before adaptation, the cumulative slow-phase and cumulative saccadic components produced on average 78% and 14% respectively of the ideal (100%) compensation, thus yielding an overall net compensation which was 92% of the desired value. After adaptation, the corresponding values in the same population were 53%, 18% and 71% respectively. Thus after adaptation, the combined saccadic-slow-phase response brought the final gaze position to a point in space that was systematically shifted in the direction of head rotation (i.e. undercompensation). Subjects re-exposed to 30 min of normal visual-vestibular interaction displayed a variety of recovery patterns using different combinations of slow and saccadic eye movements. However, there was a consistent “synergistic” tendency for saccadic eye movements to improve slow-phase performance, regardless of the subject's adaptive state. In one subject, compensatory saccadic eye movements corrected a consistent directional asymmetry in the slow-phase response. It is suggested that a conscious vestibular percept of self-rotation might underlie the combined saccadic-slow-phase response, and that the net under performance after adaptation might reflect attenuation of this percept relative to the actual rotational stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 84 (1991), S. 47-56 
    ISSN: 1432-1106
    Keywords: Saccades ; Vestibulo ocular reflex ; Adaptation ; Vestibular perception ; Eye movements ; Psychomotor performance ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Results from Bloomberg et al. (1991) led to the hypothesis that saccades which accompany the darktested vestibulo-ocular reflex (VOR) tend to move the eyes towards a vestibularly derived percept of an intended oculomotor goal: also that this is so even when that percept has been adaptively modified by suitably prolonged visual-vestibular conflict. The present experiments investigate these implications by comparing the combined VOR+saccade performance with a presumed “motor readout” of the normal and adaptively modified vestibular percept. The methods employed were similar to those of an earlier study Bloomberg et al. (1988) in which it was found that after cessation of a. brief passive whole body rotation in the dark, a previously seen earth-fixed target can be accurately located by saccadic eye movements based on a vestibular memory of the preceding head rotation; the so-called “Vestibular Memory-Contingent Saccade” (VMCS) paradigm. The result showed that the vestibular perceptual response, as measured after rotation by means of the VMCS paradigm was on average indistinguishable from the combined VOR + saccade response measured during rotation. Furthermore, this was so in both the normal and adapted states. We conclude that these findings substantiate the above hypothesis. The results incidentally reaffirm the adaptive modifiability of vestibular perception, emphasing the need for active maintenance of its proper calibration according to behavioural context.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...