Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chilling ; Chlorophyll fluorescence ; Lycopersicon (chilling) ; Photoinhibition ; Photosynthate partitioning ; Photosynthesis (chilling effects) ; Ribulose-1,5-bisphosphate carboxylase/oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To identify possible reasons for the persisting impairment of photosynthesis after long-term chilling, young tomato (Lycopersicon esculentum Mill.) plants were exposed to 6–10° C for two weeks under low illumination during the daily light period (60–100 μmol quanta · m−2 · s−1). The time courses of leaf carbohydrate contents, phosphorylated intermediates and chlorophyll-fluorescence parameters were followed. While starch formation was impaired during chilling at 6° C, soluble sugar contents increased from the first day onwards and reached up to eightfold the values found in unchilled plants within two weeks. At 8 and 10° C, a less drastic increase in soluble-carbohydrate contents was observed. During chilling, glucose-6-phosphate and fructose-6-phosphate accumulated up to 16 mM (assuming they are restricted to the cytoplasm). At the same time, non-photochemical quenching of chlorophyll fluorescence had increased and did not return to control values during the first week of recovery. The 3-phosphoglyceric acid/triose phosphate ratio remained nearly unaffected by the chilling treatment, indicating that the assimilatory power of the plants was still high even at the low temperatures. As a consequence of the chilling treatment, ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) activity in the chilled leaves was irreversibly decreased. It is suggested that, in addition to a possible (orthophosphate-mediated) feedback inhibition by internal sugar accumulation, the low activity of Rubisco can play a significant role in the strong decrease of photosynthetic capacity during long-term chilling in tomato.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Chilling ; Growth (low temperature) ; Lycopersicon (chilling) ; Photosynthesis (chilling effects) ; Stomatal resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of unfavourable climatic conditions at the onset of the growth period on chilling-sensitive tomato (Lycopersicon esculentum Mill., cv. Abunda) was studied by exposing young plants to combinations of low temperature and low light (60–100 μmol quanta · m−2 · s−1) for several weeks. When the temperature did not decrease below a critical point (8 ° C) no loss of developmental capacity of the plants was detected. However, while new leaves were readily formed upon return to normal growth conditions (22/18 °C, day/night, in a greenhouse), net accumulation of biomass showed a lag phase of approximately one week. This delay was accompanied by a strong, irreversible inhibition of photosynthesis in the fully expanded leaves which had been exposed to the chilling treatment. When plants were subjected to temperatures below 8 ° C, survival rates decreased after three weeks at 6 ° C and irreversible damage of apical meristematic tissue occurred. Drought-hardening prior to chilling ensured survival at 6 ° C and protected the plants against meristem loss.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...