Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 31 (1992), S. 221-234 
    ISSN: 1573-0867
    Keywords: Urea ; SCU ; IBDU ; supergranule ; DCD ; PPD ; nitrification inhibitor ; urease inhibitor ; Calrose ; Pelde ; banded ; broadcast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Dry-seeded rice is often fertilized by broadcasting prilled urea on the soil surface shortly before permanent flood commences. Although this method is more efficient than nitrogen application at other stages, nitrogen loss is still substantial (up to 40%). Therefore we compared the efficiency of broadcast urea prills with various forms of urea banded below the soil surface shortly before permanent flood. Banding urea prills increased plant recovery of applied15N from 37% (broadcast) to 46% (banded), while recovery with point-placed urea supergranules was even higher (49%). Plant recovery from banded urea treated with DCD (dicyandiamide) or PPD (phenylphosphorodiamidate) was not higher than from banded urea prills. Loss of applied15N averaged 25%, with no significant differences between treatments. The increased plant nitrogen recovery with banding was associated with reduced immobilization of15N in the soil, rather than reduced losses. The increase in plant nitrogen recovery was relatively small compared with total nitrogen uptake by the plants, and consequently there was no significant improvement in yield or agronomic efficiency. There are practical difficulties associated with banding before permanent flood. When the soil is too wet, unacceptable amounts of soil disturbance and plant damage occur. On the other hand, when the soil is dry and cracked, the depth of banding is no greater than the depth to which broadcast urea prills are transported by the irrigation water at the commencement of permanent flood.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 229 (1971), S. 42-42 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Nitrate-nitrogen was determined in 210 limestone samples from quarries throughout Wisconsin. Major geological formations sampled were Niagara (Silurian), Galena Black River (Ordovician), Lower Magnesian (Ordovician), and Men-dota (Cambrian) dolomites. Determinations were made with the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Lupin ; 15N dilution ; Biological N2 fixation ; Soil 15N enrichment ; Lupinus angustifolius
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Biological N2 fixation was estimated in a field experiment following the addition of NH4Cl or KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m-2 (10 atom% 15N). A model of total N and 15N accumulation in lupins and decreasing 15N enrichment in the KCl-extractable soil-N pool (0–0.15 m depth) was used to estimate the proportion of N in lupins derived from biological N2 fixation. Estimates of N2 fixation derived from the model were compared with 15N isotope-dilution estimates obtained using canola, annual ryegrass, and wheat as nonfixing reference plants. Biomass, total N accumulation, or 15N enrichment in the lupin and reference crops did not differ whether NH inf4 sup+ or NO inf3 sup- was added as the labelled inorganic-N source. The decrease in soil 15N enrichment was described by first-order kinetics, whereas total N and 15N accumulation in the lupins were described by logistical equations. Using these equations, the uptake of soil N by lupins was estimated and was then used to calculate fixed N2. Estimates of N2 fixation derived from the model increased from 0 at 50 days after sowing to a maximum of 0.79 at 190 days after sowing. Those based on the 15N enrichment of the NO inf3 sup- pool were 10% higher than those based on the mineral-N pool. 15N isotope-dilution estimates of N2 fixation ranged from 0.37 to 0.55 at 68 days after sowing and from 0.71 to 0.77 at 190 days after sowing. Reference plant-derived values of N2 fixation were all higher than modelled estimates during the early states of growth, but were similar to modelled estimates at physiological maturity. The use of the model to estimate N2 derived from the atmosphere has the intrinsic advantage that the need for a non-fixing reference plant is avoided.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Biologically fixed N ; Crop rotations ; N benefit ; N sparing ; N transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary A crop of barley was grown on plots which had previously supported pure stands of lupins, canola, ryegrass, and wheat. The plots were labelled with 15N-enriched fertilizers at the time of sowing of the antecedent crops. The crop of lupins, which derived 79% of its N from symbiotic N2 fixation at physiological maturity, conferred an N benefit to barley of 3.4 g N m-2 when compared to barley following wheat. Lupins used less fertilizer N and less unlabelled soil N compared to the other crops, but the ratios of these sources of N in the plant tops were similar. The apparent sparing of soil+fertilizer N under lupins compared with wheat was 13.6 g N m-2, which was much larger than the measured N benefit. Barley following lupins was less enriched in 15N compared to barley following wheat, and the measured isotope dilution was used to estimate the proportion of barley N derived from biologically fixed N in the lupin residues. This in turn enabled the N benefit to be partitioned between the uptake of spared N and the uptake of fixed N derived from the mineralization of legume residues. Spared N and fixed N contributed in approximately equal proportions to the N benefit measured in barley following lupins compared to barley following wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 17 (1994), S. 80-84 
    ISSN: 1432-0789
    Keywords: Biologically fixed N ; Intercropping ; Isotope dilution ; Legumes ; N transfer 15N ; Pastures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We examined the theoretical basis for estimating the transfer of N2 fixed by legumes to companion cereals or grasses in intercropping or pasture systems using 15N isotope dilution methodology. A method was developed to calculate the symbiotic dependence of the legume in a mixed stand based on 15N enrichment of the associated non-legume and the estimate of fixed N transfer. Published field data were used to illustrate the application of the method. Complementary treatments for verifying N transfer and options for increasing the accuracy of estimates of N transfer are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen (N2) fixation in an irrigated white clover-grass sward was estimated using the 15N isotope dilution technique following the addition of K15NO3 at 0.5 gN m−2 and 80 atom % 15N in a field study during the 1990–91 season. Two water salinity treatments (channel water; ECw = 0.07 and groundwater; 2.4 dS m−1) and four irrigation frequencies were included in a factorial design with four replicates. The channel water treatments were irrigated when pan evaporation minus rainfall equalled 50 mm, whereas the groundwater treatments were irrigated at deficits of 40, 50, 65 or 80 mm. Cumulative dry matter of the clover was significantly less in treatments irrigated with saline groundwater compared to channel water at day 164, and soil salinities (ECe) increased on average from 2.3 to 5.07 dS m−1. In contrast, salinity of the irrigation water had no effect on the cumulative yield of grass. Cumulative dry matter of the grass and clover were not affected by groundwater irrigation frequency. Total N accumulation by the grass did not differ significantly between treatments. However, total N accumulation in white clover was significantly less (P 〈 0.05) in all treatments irrigated with groundwater compared to channel water. Neither the N concentrations of the grass nor the clover differed significantly between the salinity treatments. Salinity and irrigation frequency had no effect on the proportion of clover N (Patm) derived from N2 fixation. The values of Patm were high throughout, and increased progressively from 0.78 at day 39 to 0.91 at day 164 (P 〈 0.01). However, the yield of fixed N was lower in clover when watered with groundwater compared to channel water (P 〈 0.01). Thus low to moderate soil salinity did not affect the symbiotic dependence of clover, but the yield of biologically-fixed N was depressed through a reduction in the dry matter yield of the legume.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 132 (1991), S. 29-39 
    ISSN: 1573-5036
    Keywords: actinorhizal plants ; associative nitrogen fixation ; cereals ; grasses ; isotope dilution ; 15N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract During the past 10 years estimates of N2 fixation associated with sugar cane, forage grasses, cereals and actinorhizal plants grown in soil with and without addition of inoculum have been obtained using the 15N isotope dilution technique. These experiments are reviewed in this paper with the aim of determining the proportional and absolute contribution of N2 fixation to the N nutrition of non-legumes, and its role as a source of N in agriculture. The review also identifies deficiencies in both the totality of data which are currently available and the experimental approaches used to quantify N2 fixation associated with non-legumes. Field data indicate that associative N2 fixation can potentially contribute agronomically-significant amounts of N (〉30–40 kg N ha-1 y-1) to the N nutrition of plants of importance in tropical agriculture, including sugar cane (Saccharum sp.) and forage grasses (Panicum maximum, Brachiaria sp. and Leptochloa fusca) when grown in uninoculated, N-deficient soils. Marked variations in proportions of plant N derived from the atmosphere have been measured between species or cultivars within species. Limited pot-culture data indicate that rice can benefit naturally from associative N2 fixation, and that inoculation responses due to N2 fixation can occur. Wheat can also respond to inoculation but responses do not appear to be due to associative N2 fixation. 15N dilution studies confirm that substantial amounts of N2 can be fixed by actinorhizal plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: ammonium uptake ; immobilization ; mineralization ; nitrate uptake ; nitrification ; 15NH4NO3 ; NH4 15NO3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Rates of N uptake by spring wheat as ammonium and as nitrate, and rates of nitrification, gross N immobilization and gross N mineralization were measured in a pot experiment during 84 days of growth in a clay soil. Soil treatments included an unfertilized control and addition of 15NH4NO3 or NH4 15NO3 in the absence and presence of N-serve 24E. Incorporation of ammonium into the soil organic N pool was considerably higher in the presence compared to the absence of nitrapyrin, but the processes contributing to this effect could not be positively identified. Both dry matter and grain yield as well as N uptake by wheat were enhanced in the presence of the inhibitor in N fertilized soil, despite the increased immobilization of N. On the other hand, inhibitor application had a detrimental effect on yield and N uptake by wheat in unfertilized soil. Both ammonium and nitrate forms of inorganic N were absorbed by wheat, but nitrate uptake was dominant in the absence of the inhibitor. The uptake of N as ammonium was higher and the uptake of N as nitrate was less, both in absolute and proportional terms, in the presence compared to the absence of inhibitor. In addition, the proportion of N taken up as ammonium was higher than the proportion of N as ammonium in the available N pool up to day 56 in the inhibitor treatment, which indicated a preference for ammonium uptake by wheat. Evidence was obtained which suggested that several factors may have contributed to the positive response of wheat to inhibitor application in N fertilized soil, including reduced N losses, higher gross N mineralization and a physiological response due to the proportional increase in uptake of inorganic N as ammonium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 36 (1993), S. 239-248 
    ISSN: 1573-0867
    Keywords: Added nitrogen interaction ; alkaline hydrolysis ; ammonia fixation ; aqua ammonia ; di-ammonium phosphate ; fertilizer-induced deamination ; urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Chemical interactions between soil N and alkaline-hydrolysing N fertilizers labelled with15N were studied in the laboratory using twelveγ-irradiated soils. Fertilizer was recovered in the soil organic N fraction via the process of NH3 fixation. NH3 fixation at day 7 varied from 1.8 to 4.6% of the N added as aqua ammonia at 1000 mg kg−1 soil. The amount of NH3 fixed increased with increasing rates of application of NH3(aq) and urea. The rate of NH3 fixation decreased with time, with more than 55% of the total NH3 fixation in 28 days occurring in the first week following application of 2000 mg urea-N kg−1 soil. Soil pH and NH3 fixation varied in response to N source, and increased in the order of di-ammonium phosphate 〈urea 〈 aqua ammonia at equivalent N concentrations. The alkaline hydrolysis of indigenous organic N occurred simultaneously with NH3 fixation, resulting in the release of unlabelled ammonium (deamination) and a real added nitrogen interaction in all but two of the soils studied. The release of NH 4 + initially increased up to a pH of 7.5, was inhibited between pH 8.5 and 9.0, but increased thereafter. The balance (Nbal) between NH3 fixation and deamination was either positive or negative, depending on the pH of the fertilized soil, which was directly related to N source and concentration for a given soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 38 (1994), S. 131-139 
    ISSN: 1573-0867
    Keywords: aqua ammonia ; di-ammonium phosphate ; gamma-irradiated soil ; 15N ; organic matter solubility ; urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Interactions between15N-labelled fertilizers applied at concentrations representative of the fertilizer microsite and the solubility of the nitrogenous component of soil organic matter were investigated in laboratory experiments. Soil organic N was solubilized in aγ-irradiated soil due to addition of NH3(aq), and the fertilizer-induced loss of unlabelled total N in the extracted soil (ΔTUs) increased with increasing N fertilizer concentration and soil pH. ΔTUs was linearly correlated with ammoniacal-N concentration and the pH of the fertilized soil within the range of 7.5-10 (r = 0.94). Total organic N in the soil extract (OTe) increased rapidly up to day 14 following addition of 2000 mg urea-N kg−1 soil, but was then stable up to day 28. OTe of a range of soils increased from between 5 and 148 to between 15 and 368 mg N kg−1 soil after application of 1045 mg NH3-N kg−1 soil. While up to 25% of the organic N was solubilized by the fertilizer in nine soils, the change in total organic N in the extracts (ΔOTe) of three soils was not significant. The highest ΔOTe of 399 mg N kg−1 soil (35.4% of soil organic N) was measured after application of 2000 mg NH3-N kg−1 soil. pH and ΔOTe decreased in the order of NH3(aq) 〉 urea 〉 di-ammonium phosphate 〉 ammonium sulphate at equivalent rates of N addition. A negative ΔOTe was measured following application of ammonium sulphate. ΔOTe was correlated with the pH of the fertilized soil but not ammoniacal-N concentration for different N fertilizer sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...