Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neurochirurgica 122 (1993), S. 257-265 
    ISSN: 0942-0940
    Keywords: Subdural bleeding ; subdural compartment ; regional blood flow ; regional vascular resistance ; CSF pressures ; autonomic nervous effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of a large intracranial arterial subdural bleeding on regional blood flow in the brain (rCBF) and in other body organs were studied, using a porcine model. The bleeding was produced by leading blood through a catheter from the abdominal aorta via an electronic drop recorder into the subdural compartment (SDC) over the left cerebral hemisphere. Pressures in the right lateral cerebral ventricle and in the cisterna magna were recorded along with 15 other vital parameters. Measurements of rCBF were carried out using radioactive microspheres 1) before the start of bleeding, 2) during the early bleeding phase, and 3) during the late bleeding phase. When the bleeding was initiated, the intracranial pressures rose within one minute to a level approximately 40 mmHg below the systemic arterial pressure, whilst the latter usually decreased 30–40 mmHg. In the subsequent early bleeding phase the cerebral perfusion pressure and the bleeding pressure fluctuated at a level of approximately 40 mmHg for several minutes. In the late bleeding phase, the perfusion pressure decreased maximally, even when a Cushing reaction was activated. During the early bleeding phase the changes in rCBF varied between the cerebral regions. However, the mean flow remained largely constant in the presence of a decreasing cerebrovascular resistance, indicating that autoregulation of CBF was intact. Concomitantly, cardiac output and heart rate decreased, whilst regional blood flow in extracerebral organs tended to increase, possibly due to an intracranial effect on the autonomic nervous system. In the late bleeding phase, rCBF was critically reduced in all regions, in spite of a marked rise in systemic arterial pressure. The peripheral vascular resistance usually increased by 100% in the brain, but possibly increased also in the majority of extracerebral organs. Exceptions were the adrenal gland and the heart muscle where the vascular resistance was 70% lower, and flow was 35% and 80% higher, respectively, than in the control situation. The integrated effects of the different vascular reactions served to enhance intracranial haemostasis and survival.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...