Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • 1960-1964
  • 1950-1954
  • Glia  (2)
  • Capacitance  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 277 (1994), S. 87-95 
    ISSN: 1432-0878
    Keywords: Key words: Blood-brain barrier ; Anionic sites ; Larvae ; Septate junctions ; CNS ; Glia ; Ultrastructure ; Drosophila melanogaster (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The blood-brain barrier ensures brain function in vertebrates and in some invertebrates by maintaining ionic integrity of the extraneuronal bathing fluid. Recent studies have demonstrated that anionic sites on the luminal surface of vascular endothelial cells collaborate with tight junctions to effect this barrier in vertebrates. We characterize these two analogous barrier factors for the first time on Drosophila larva by an electron-dense tracer and cationic gold labeling. Ionic lanthanum entered into but not through the extracellular channels between perineurial cells. Tracer is ultimately excluded from neurons in the ventral ganglion mainly by an extensive series of (pleated sheet) septate junctions between perineurial cells. Continuous junctions, a variant of the septate junction, were not as efficient as the pleated sheet variety in blocking tracer. An anionic domain now is demonstrated in Drosophila central nervous system through the use of cationic colloidal gold in LR White embedment. Anionic domains are specifically stationed in the neural lamella and not noted in the other cell levels of the blood-brain interface. It is proposed that in the central nervous system of the Drosophila larva the array of septate junctions between perineurial cells is the physical barrier, while the anionic domains in neural lamella are a “charge-selective barrier” for cations. All of these results are discussed relative to analogous characteristics of the vertebrate blood-brain barrier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 277 (1994), S. 87-95 
    ISSN: 1432-0878
    Keywords: Blood-brain barrier ; Anionic sites ; Larvae ; Septate junctions ; CNS ; Glia ; Ultrastructure ; Drosophila melanogaster (Insecta)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The blood-brain barrier ensures brain function in vertebrates and in some invertebrates by maintaining ionic integrity of the extraneuronal bathing fluid. Recent studies have demonstrated that anionic sites on the luminal surface of vascular endothelial cells collaborate with tight junctions to effect this barrier in vertebrates. We characterize these two analogous barrier factors for the first time on Drosophila larva by an electron-dense tracer and cationic gold labeling. Ionic lanthanum entered into but not through the extracellular channels between perineurial cells. Tracer is ultimately excluded from neurons in the ventral ganglion mainly by an extensive series of (pleated sheet) septate junctions between perineurial cells. Continuous junctions, a variant of the septate junction, were not as efficient as the pleated sheet variety in blocking tracer. An anionic domain now is demonstrated in Drosophila central nervous system through the use of cationic colloidal gold in LR White embedment. Anionic domains are specifically stationed in the neural lamella and not noted in the other cell levels of the blood-brain interface. It is proposed that in the central nervous system of the Drosophila larva the array of septate junctions between perineurial cells is the physical barrier, while the anionic domains in neural lamella are a “charge-selective barrier” for cations. All of these results are discussed relative to analogous characteristics of the vertebrate blood-brain barrier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 162 (1992), S. 707-713 
    ISSN: 1432-136X
    Keywords: Skin ; Sodium transport ; Water flux ; Arginine vasotocin ; Capacitance ; Toad, Bufo woodhouseii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The amphibian antidiuretic hormone, arginine vasotocin, stimulated osmotic water flow across isolated skin from the pelvic but not the pectoral skin of the toad, Bufo woodhouseii. Changes in the apical membrane capacitance were not observed for either region of the skin following treatment with arginine vasotocin when there was an osmotic gradient across the tissue. In the absence of an osmotic pressure gradient, the apical membrane capacitance of the pelvic skin increased from 2.8±0.5 to 3.3±0.6 μF · cm-2 after treatment with 5 · 10-8 M arginine vasotocin. Under these conditions, apical membrane capacitance of the pectoral skin was 1.8±0.1 μF · cm-2 and did not change significantly after arginine vasotocin treatment. The amiloride-sensitive short-circuit current across the pelvic skin was stimulated by arginine vasotocin as was the density of channels in the apical membrane as determined by fluctuation analysis. Values for channel density in the pelvic skin also correlated with apical membrane capacitance and increased from 90 to 273 channels per μm2 of estimated membrane area following arginine vasotocin treatment. In the pectoral skin the stimulation of short-circuit current following arginine vasotocin treatment was small and an increase in channel density could not be demonstrated. The current through single Na+ channels in both regions of the skin did not different either before or after arginine vasotocin treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...