Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 14 (1993), S. 1523-1533 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Using a 6-311G** basis set with estimation of correlation energy at the MP2 level, structural and energetic data for 40 molecular species containing magnesium have been calculated. For about half the species studied, further energetic data were obtained using Pople's G2 method. Enthalpy changes at 298.15 K were obtained for isogyric reactions and standard enthalpies of formation were derived from these. Comparison of the standard enthalpies of formation with the sparse literature data suggests the MP2/6-311G** standard enthalpies of formation are accurate to ± 15 kJ mol-1 and the corresponding G2 enthalpies accurate to ± 10 kJ mol-1. The calculated ΔH0f [MgN, g] revealed a gross error in the currently accepted value for this function. It is intended that these results will be used to parameterize the semiempirical molecular orbital package, MOPAC, for the element magnesium. © John Wiley & Sons, Inc.
    Additional Material: 13 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 102-114 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Energy surfaces for the relative orientations of the pyranosyl rings of α,α-, α,β-, and β,β-trehalose and analogues were generated with MM3. Sixteen starting conformations of the rotatable side groups of α,β-trehalose were considered, while only 10 conformations were needed for α,α- and β,β-trehalose because of molecular symmetry. Energies were calculated at 20° increments of the two torsional angles of the glycosidic linkage, but otherwise the molecules were fully relaxed. The structure at the overall minimum for α,α-trehalose agrees well with that found in crystal structures, and also agrees with interpretations of NMR and optical rotation data. The energy surfaces for the three trehaloses differ greatly from each other, but are each similar to those for the corresponding three 2-(6-methyltetrahydropyran-2-yloxy)6-methyltetrahydropyrans. This suggests that linkage type (axial or equatorial) is more important than exocyclic substituents in determining trehalose conformations. A comparison with surfaces from the corresponding 5a-carba trehalose analogues illustrates that the exo-anomeric effect is important in determining disaccharide conformation.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 667-683 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: New atom- and group-based spherical-cutoff methods have been developed for the treatment of nonbonded interactions in molecular dynamics (MD) simulation. A new atom-based method, force switching, leaves short-range forces unaltered by adding a constant to the potential energy, switching forces smoothly to zero over a specified range. A simple improvement to group-based cutoffs is presented: Switched group-shifting shifts the group-group potential energy by a constant before being switched smoothly to zero. Also introduced are generalizations of atom-based force shifting, which adds a constant to the Coulomb force between two charges. These new approaches are compared to existing methods by evaluating the energy of a model hydrogen-bonding system consisting of two N-methyl acetamide molecules and by full MD simulation. Thirty-five 150 ps simulations of carboxymyoglobin (MbCO) hydrated by 350 water molecules indicate that the new methods and atom-based shifting are each able to approximate no-cutoff results when a cutoff at or beyond 12 Å is used. However, atom-based potential-energy switching and truncation unacceptably contaminate group-group electrostatic interactions. Group-based potential truncation should not be used in the presence of explicit water or other mobile electrostatic dipoles because energy is not a state function with this method, resulting in severe heating (about 4 K/ps in the simulations of hydrated MbCO). The distance-dependent dielectric (∊ ∝ r) is found to alter the temperature dependence of protein dynamics, suppressing anharmonic motion at high temperatures. Force switching and force shifting are the best atom-based spherical cutoffs, whereas switched group-shifting is the preferred group-based method. To achieve realistic simulations, increasing the cutoff distance from 7.5 to 12 Å or beyond is much more important than the differences among the three best cutoff methods. © 1994 by John Wiley & Sons, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...