Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 348 (1993), S. 1-6 
    ISSN: 1432-1912
    Keywords: Plasticity ; Rat ; Hippocampus ; LTP ; PKC ; Kinase antagonist
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have studied the effects of calphostin C, an antagonist of the regulatory subunit of protein kinase C, on the induction and expression of long-term potentiation (LTP) and on responses mediated by activation of N-methyl-d-aspartate (NMDA) receptors in rat hippocampal slices. No effect of calphostin C was observed on preestablished LTP, even at concentrations of 2–3 μmol/l. In contrast, the drug was found to prevent LTP induction. This effect was concentration-dependent, although high concentrations were needed (1–2 μmol/l), and, at the lower concentrations, it could be partially antagonized by using coactivation of two pathways instead of single input activation. While calphostin C did not alter synaptic transmission mediated by activation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors, it considerably interfered with the function of NMDA receptors. The drug blocked the NMDA receptor-mediated component of burst responses, significantly antagonized the NMDA receptor-mediated synaptic responses recorded in the presence of an AMPA receptor antagonist, and blocked the effect of iontophoretic application of NMDA on regular synaptic transmission. These results are consistent with the idea that calphostin C prevents the induction of long-term potentiation by interfering with the function of NMDA receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6792
    Keywords: 1H-NMR imaging ; (Rat) brain ; Fimbria fornix ; Hippocampus ; Ventricle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mechanical lesions of the fimbria fornix (FF) have been widely used as a model to investigate the recovery of damaged brain tissue.1H-NMR imaging was employed to non-invasively measure changes in the brain after unilateral FF transection. Rats were subjected to NMR imaging at various times after the lesions were made. The experimental protocol included (multislice) T2-weighted and diffusion-weighted imaging thereby allowing the construction of two-dimensional maps of the relaxation time T2 (transverse or spin-spin relaxation time) and the apparent diffusion coefficient (ADC) of water. FF transection induced considerable changes in the status of the brain tissue at a number of different locations which were exclusively present in the affected hemisphere. At 1 day post-lesion the region of the lateral ventricle and hippocampus started to display pronounced changes in that T2- and diffusion-weighted images showed a hyperintensity and a hypointensity, respectively. These effects were maximal around day 2 to 4 whereafter a slow recovery towards the control situation was observed. Immediately after transection the FF lesion itself could be visualized. These early images pointed to an aspecific disruption of the tissue due to the mechanical intervention. Interestingly, however, from day 2 post-lesion a number of changes became evident in this region which seemed to be localized to specific structures, including the ventricle and hippocampus. After one month the presumably ventricular effect dominated and was predominantly localized to the anterior side of the FF lesion. These findings are indicative of pronounced changes in the status of water (e.g., in its distribution between extra- and intracellular compartments) at a number of locations distant from the site of FF transection. The mechanism by which these changes are brought about and the origin of their time-dependence remain to be elucidated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...