Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • 5-HT3 receptor antagonist  (1)
  • Cerebellum  (1)
  • 5-HT High affinity binding
  • 1
    ISSN: 1432-2013
    Keywords: Cerebellum ; Potassium channels ; Dihydropyridines ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In cultured cerebellar granule cells, we examined the effects of dihydropyridines (DHPs) on K+ currents, using the whole-cell recording configuration of the patch-clamp technique and on Ca2+-activated K+ channels (“maxi K+ channels”) using outside-out patches. We found that micromolar concentrations of nicardipine, nifedipine, (+) and (−) BAY K 8644, nitrendipine, nisoldipine and (−) nimodipine block 10–60% of macroscopic K+ currents. The most potent of these DHPs was nicardipine and the least potent, (−) BAY K 8644. (+) Nimodipine had no effect on this current. The inhibitory effects of nifedipine and nicardipine were not additive with those of 1 mM tetraethylammonium (TEA). Outside-out recordings of “maxi K+ channels” showed a main conductance of 200 pS (in 77% of the patches) and two subconductance states (in 23% of the patches). Neither nifedipine nor nicardipine affected the main conductance, but decreased the values of the subconductance levels. In 10% of these patches, nicardipine induced a flickering activity of the channel. These findings show that both Ca2+ and K+ channels have DHP-sensitive sites, suggesting similarity in electrostatic binding properties of these channels. Furthermore, cerebellar granule cells may express different subtypes of “maxi K+ channels” having different sensitivities to DHPs. These drugs may provide new tools for the molecular study of K+ channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: 5-HT4 receptor antagonist ; 5-HT3 receptor antagonist ; Azabicycloalkyl benzimidazolone derivatives
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Three chemical classes of serotonin 5-HT4 receptor agonists have been identified so far: 5-substituted indoles (e.g. 5-HT), benzamides (e.g. renzapride) and benzimidazolones (e.g. BIMU 8). In a search for 5-HT4 receptor antagonists, we have discovered that the benzimidazolone derivative DAU 6285 (for structure see text), is 3–5 times more potent than tropisetron in blocking 5-HT, renzapride and BIMU 8 induced stimulation of adenylate cyclase activity in mouse embryo colliculi neurons. Schild plot analysis yielded Ki values of 220, 181 and 255 nmol/l, respectively. In addition, DAU 6285 showed poor activity as a 5-HT3 receptor ligand with respect to tropisetron, as demonstrated by in vitro binding studies (Ki, 322 vs 2.8 nmol/l) and by its antagonistic activity in the Bezold-Jarisch reflex test (ID50, 231 vs 0.5 μg/kg, i.v.). No significant binding (Ki〉10 μmol/l) of DAU 6285 to serotonergic 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, and 5-HT2 receptors as well as to adrenergic α1, α2, dopaminergic D1, D2 or muscarinic M1–M3 receptor subtypes was found. The data indicate that DAU 6285 has a somewhat higher affinity than tropisetron for 5-HT4 receptors, a property confirmed in functional tests, and much lower affinity than tropisetron for 5-HT3 receptors. The compound represents a new interesting tool for investigating the pharmacological and physiological properties of 5-HT4 receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...