Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • ADH  (1)
  • Cell isolation  (1)
  • Cl− secretion  (1)
  • 1
    ISSN: 1432-2013
    Keywords: ADH ; V1 receptor ; dDAVP ; Intracellular Ca2+ ; Fura-2 ; In vitro microperfusion ; Rabbit kidney ; Cortical thick ascending limb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of antidiuretic hormone ([Arg]vasopressin, ADH) on intracellular calcium activity [Ca2+]i of isolated perfused rabbit cortical thick ascending limb (cTAL) segments was investigated with the calcium fluorescent dye fura-2. The fluorescence emission ratio at 500–530 nm (R) was monitored as a measure of [Ca2+]i after excitation at 335 nm and 380 nm. In addition the transepithelial potential difference (PD te) and transepithelial resistance (R te) of the tubule were measured simultaneously. After addition of ADH (1–4 nmol/l) to the basolateral side of the cTAL R increased rapidly, but transiently, from 0.84±0.05 to 1.36±0.08 (n = 46). Subsequently, within 7–12 min R fell to control values even in the continued presence of ADH. The increase in R evoked by the ADH application corresponded to a rise of [Ca2+]i from a basal level of 155±23 nmol/l [Ca2+]i up to 429±53 nmol/l [Ca2+]i at the peak of the transient, as estimated by intra- or extracellular calibration procedures. The electrical parameters (PD te and R te) of the tubules were not changed by ADH. The ADH-induced Ca2+ transient was dependent on the presence of Ca2+ on the basolateral side, whereas luminal Ca2+ had no effect. d(CH2)5[Tyr(Me)2]2,Arg8vasopressin, a V1 antagonist (Manning compound, 10 nmol/l), blocked the ADH effect on [Ca2+]i completely (n = 5). The V2 agonist 1-desamino-[d-Arg8]vasopressin (10 nmol/l, n=4), and the cAMP analogues, dibutyryl-cAMP (400 μmol/l, n = 4), 8-(4-chlorophenylthio)-cAMP (100 μmol/l, n = 1) or 8-bromo-cAMP (200 μmol/1, n = 4) had no influence on [Ca2+]i. The ADH-induced [Ca2+]i increase was not sensitive to the calcium-channel blockers nifedipine and verapamil (100 μmol/l, n = 4). We conclude that ADH acts via V1 receptors to increase cytosolic calcium activity transiently in rabbit cortical thick ascending limb segments, possibly by an initial Ca2+ release from intracellular stores and by further Ca2+ influx through Ca2+ channels in the basolateral membrane. These channels are insensitive to L-type Ca2+ channel blockers, e.g. nifedipine and verapamil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 424 (1993), S. 329-334 
    ISSN: 1432-2013
    Keywords: Exocytosis ; Membrane capacitance ; Cl− channel ; Cl− secretion ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Increases of cytosolic Ca2+, as occur with agonists such as ATP, neurotensin (NT), hypotonic cell swelling and ionomycin, enhance the membrane conductance (G M) and hence the input conductance (G I) of HT29 cells. In the present study we have examined whether these increases in G M are paralleled by exocytosis. To this end the membrane capacitance (C M) of HT29 cells was measured by patch clamp techniques. Two methods to monitor C M were used: a direct method (DM) and a phase tracking method (PTM). With the DM the following results were obtained. NT (10−8 mol/l, n=9) increased G M and C m significantly from 2.4±0.3 nS and 23.5±3 pF to 32±8 nS and 27.3±3.1 pF respectively. ATP (10−4 mol/l, n=29) had a very similar effect. G m and C m were increased from 5.7±1 nS and 36±4.4 pF to 111±21 nS and 44±5.4 pF respectively. Hypotonic cell swelling (160 mosmol/l, n=18) had a comparable effect: G M and C M were increased from 4.9±1 nS and 30±4.1 pF to 46±10 nS and 37±4.9 pF respectively. Ionomycin (10−7 mol/l, n=4) gave similar results. With the PTM it was possible to monitor the rapid changes in G M and C M, as they were induced by ATP (n=42) and NT (n=29), with high time resolution. The transient and instantaneous (〈 1 s) increases in G I (from 2.1±0.4 to 21.7±1.7 nS in the case of ATP, and from 2.3±0.4 to 26.6±3.1 nS in the case of NT) were closely paralleled by transient increases in C m (from 17.6±1.4 to 21.1±1.7 pF in the case of ATP, and from 20.6±2.3 to 24.3±2.6 pF in the case of NT). The present data indicate that transient (ATP, NT) or more stable (hypotonic cell swelling, ionomycin) increases in [Ca2+]i produce corresponding increments in G m and C M. The relative changes in both parameters correlate with each other. These findings are compatible with the view that exocytosis is related to the Ca2+-mediated control of Cl− conductance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 421 (1992), S. 381-387 
    ISSN: 1432-2013
    Keywords: Rat ; Cell isolation ; K+ channels ; Na+-conductance ; Patch clamp ; Cell-attached-nystatin technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The study of ion conductances in the intact cortical collecting duct (CCD) with the patch-clamp method is rather difficult. An optimized method to isolate CCD cells from rat kidneys using an in vivo followed by an in vitro enzyme digestion is described. Individual CCD segments were collected after this digestion and incubated in EGTA-buffered medium. This procedure resulted in single cells or cell clusters. These freshly isolated CCD cells were studied with different modifications of the patch-clamp method. Membrane voltages measured in the cell-attached-nystatin configuration were −74 ±1mV (n=13) and −68±3 mV (n=22) in cells isolated from normal and mineralocorticoid-treated rats respectively. These values and those measured with the nystatin-perforated slow-whole-cell configuration (−79 ±1mV, n=23) are comparable to those measured in principal cells of isolated CCD segments. The cells hyperpolarized after the addition of amiloride and depolarized with the addition of adiuretin to the bath. The amiloride effect was enhanced when cells were isolated from deoxycorticosterone-acetate-treated rats. The cells were strongly depolarized upon elevation of the extracellular K+-concentration and did not demonstrate a measurable Cl− conductance. A large-conductance K+ channel (174 pS, n=5, cell-attached, 145 mmol/l K+ in the pipette; 140 pS, n=12, cell-free, 3.6 mmol/l K+ in the bath) was seen. It had a very low activity on the cell, but a high open probability when excised into a solution with 1 mmol/l Ca2+ on the cytosolic side. More often a small-conductance K+ channel (36–52 pS, n=19, cell-attached; 30 pS, n=5, cell-free) with a high open probability was found on the cell. These freshly isolated cells seem to be a powerful preparation to study the properties and regulation of ion conductances of rat CCD with several electrophysiological methods. These freshly isolated CCD cells maintain the conductance properties known from principal cells of the intact CCD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...