Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Acacia trees ; Drought tolerance ; Sterile and non-sterile soils ; Plant dry weights ; VAM fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Faidherbia albida (syn. Acacia albida) (Del.) A. Chev. and Acacia nilotica (L.) Willd. were grown for 18 weeks in sterile and non-sterile soils inoculated with Glomus clarum (Nicolson and Schenck). During this period, drought stress was imposed for the last 10 (F. albida) or 12 weeks (A. nilotica) at 2-week intervals. A greater number of leaves abscissed in drought-stressed mycorrhizal plants of A. nilotica than drought-stressed non-mycorrhizal and unstressed plants. In F. albida, the number of abscissed leaves was few and similar for all treatments. At the end of the drought stress, inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi in sterile soil increased the plant biomass of the two tree species compared to the control plants. In non-sterile soil, the mycorrhizal growth response of introduced G. clarum equalled the effect of indigenous VAM fungi. There were significant interactions between the mycorrhizal and drought stress treatments and between the mycorrhizal and soil treatments for plant biomass and P uptake in F. albida. The absence of these interactions except for that between the mycorrhizal and soil treatments in A. nilotica indicates that the increased plant biomass and nutrient uptake cannot be attributed directly to a mycorrhizal contribution to drought tolerance. F. albida tolerated the drought stress by producing long tap roots and similar weights of dry matter in shoots and roots. Whereas A. nilotica tolerated the drought stress by developing larger root systems able to explore a greater volume of soil, in addition to leaf abscission, for a favourable internal water status. The introduction of G. clarum increased nodulation by A. nilotica under unstressed conditions, but at the expense of a reduced P uptake in sterile soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: inoculation ; Leucaena leucocephala ; nitrogen fixation ; nodulation ; persistence ; Rhizobium strains
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Establishment of Leucaena leucocephala was poor at Ibadan (Transition forest-savanna zone) and Fashola (savanna zone, 70 km north of Ibadan) in southwestern Nigeria as a result of low soil fertility and the presence of only a few native rhizobia capable of nodulating it. Inoculation with L. leucocephala at these two locations in 1982 resulted in striking responses with Rhizobium strains IRc 1045 and IRc 1050 isolated from L. leucocephala grown in Nigeria. The persistence of inoculated effective Rhizobium strains after inoculation is desirable since it removes the need for reinoculation. Because of the perennial nature of L. leucocephala and its use in long-term alley farming experiments, we examined the persistence of inoculated rhizobial strains after inoculation, and their ability to sustain N2-fixation and biomass production at Ibadan. In 1992, ten years after Rhizobium introduction, uninoculated, L. leucocephala fixed about 150 kg N ha-1 yr-1 or about 41% of total plant N compared to 180 kg N ha-1 yr-1 or 43% measured in 1982. Serological typing of the nodules using the Enzyme-Linked-Immunosorbent Assay (ELISA) and intrinsic resistance to the streptomycin test revealed that most of the nodules (96%) formed on L. leucocephala in 1992 were by Rhizobium strains IRc 1045 and IRc 1050, which were inoculated in 1982. Nodules were absent on uninoculated L. leucocephala grown on the adjacent field with no history of L. leucocephala cultivation. We conclude that the N2 fixed by Rhizobium strains IRc 1045 and IRc 1050 persisted for many years in the absence of L. leucocephala and sustained effectively fixed N2 which growth and yield of L. leucocephala after several years, thus encouraging a possible low-input alley farming system by smallholder farmers in Nigeria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...