Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • Rat  (2)
  • Bicuculline
  • Cerebral cortex
  • 1
    ISSN: 1432-1912
    Keywords: Entorhinal cortex ; Isomers ; Low magnesium epilepsy ; Losigamone ; Maximal electroshock test ; Mice ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Losigamone (AO-33) is a recemate of a tetronic acid derivative. The effects of losigamone and its three isomers (AO-242, AO-294 and AO-23) were compared on maximal electroshock (MES) induced convulsions in mice and on different patterns of extracellularly recorded, low Mg 2+ induced epileptiform activity in slices of the rat temporal cortex. Lowering Mg 2+ induced recurrent short discharges in areas CA3 and CA1 while ictaform events that lasted for many seconds were induced in the entorhinal cortex. In the hippocampus the activity stayed stable over a number of hours. In contrast, the ictaform events in the entorhinal cortex changed their characteristics after one to two hours to recurrent discharges of 0.8 to 10 s. Afterdischarges and interictal events were absent. 50 μM AO-242 showed a similar efficacy to 50 μM AO-33 in reducing and blocking epileptiform discharges in areas CA1 and CA3 while 50 μM AO-294 and 50 μM AO-23 had weaker effects than 50 μM AO-33. Concentrations of 50 μM and 100 μM AO-242 showed a similar efficacy to AO-33 on ictaform events in the entorhinal cortex. Late recurrent discharges were also blocked by AO-33 and AO-242 although at higher concentrations (300 μM). The in vitro observations are with respect to order of efficacy in accordance with the in vivo data obtained in the maximal electroshock test in mice. The order of potency in the MES test was AO-242〉AO-33≫AO-294≫ AO-23. The results show that the erythro-isomer AO-23, although active, is much less potent than AO-33. Of the two optical isomers of losigamone the (+) isomer AO-242 is more active than the (−) form AO-294.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 97 (1993), S. 209-224 
    ISSN: 1432-1106
    Keywords: Hypoxia ; Neocortical slice ; Synaptic transmission ; GABAergic inhibition ; Interneurons ; Development ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To analyze the functional consequences of hypoxia on the efficacy of intracortical inhibitory mechanisms mediated by gamma-aminobutyric acid (GABA), extra- and intracellular recordings were obtained from rat primary somatosensory cortex in vitro. Hypoxia, induced by transient N2 aeration, caused a decrease in stimulus-evoked inhibitory postsynaptic potentials (IPSPs), followed by a pronounced anoxic depolarization. Upon reoxygenation, the fast (f-) and long-latency (l-) IPSP showed a positive shift in the reversal potential by 24.4 and 14.9 mV, respectively. The peak conductance of the f-and l-IPSP was reversibly reduced in the postanoxic period by 72% and 94%, respectively. Extracellular field potential recordings and application of a paired-pulse inhibition protocol confirmed the enhanced sensitivity of inhibitory synaptic transmission for transient oxygen deprivation. Intracellular recordings from morphologically or electrophysiologically identified interneurons did not reveal any enhanced susceptibility for hypoxia as compared to pyramidal cells, suggesting that inhibitory neurons are not selectively impaired in their functional properties. Intracellularly recorded spontaneous IPSPs were transiently augmented in the postanoxic period, indicating that presynaptic GABA release was not suppressed. Developmental studies in adult (older than postnatal day 28), juvenile (P14–18), and young (P5-8) neocortical slices revealed a prominent functional resistance of immature tissue for hypoxia. In comparison with adult cortex, the hypoxia-induced reduction in excitatory and inhibitory synaptic transmission was significantly smaller in immature cortex. Our data indicate a hypoxia-induced distinct reduction of postsynaptic GABAergic mechanisms, leading to the manifestation of intracortical hyperexcitability as a possible functional consequence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...