Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (5)
  • Computational Chemistry and Molecular Modeling  (3)
  • Biochemistry and Biotechnology  (2)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 8 (1990), S. 334-340 
    ISSN: 0887-3585
    Keywords: protein structure ; structural comparison ; α-β barrels ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: By exhaustive structural comparisons, we have found that about one-third of the α-helix-turn-β-strand polypeptides in α-β barrel domains share a common structural motif. The chief characteristics of this motif are that first, the geometry of the turn between the α-helix and the β-strand is somewhat constrained, and second, the β-strand contains a hydrophobic patch that fits into a hydrophobic pocket on the α-helix. The geometry of the turn does not seem to be a major determinant of the α-β unit, because the turns vary in length from four to six residues. However, the motif does not occur when there are few constraints on the geometry of the turn-for instance, when the turns between the α-helix and the β-strands are very long. It also occurs much less frequently in flat-sheet α-β proteins, where the topology is much less regular and the amount of twist on the sheet varies considerably more than in the barrel proteins. The motif may be one of the basic building blocks from which α-β barrels are constructed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0952-3499
    Keywords: Cytokine ; Receptor ; Biosensor ; Titration ; Calorimetry ; Association rate ; Dissociation rate ; Equilibrium analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A surface plasmon resonance (SPR) biosensor was used to study the interaction of human interleukin-5 (hIL5) with its receptor. IL5 is a major growth factor in the production and activation of eosinophilis. The receptor for IL5 is composed of two subunits, α and β. The α subunit provides the specificity for IL5 and consist of an extracellular soluble domain, a single transmembrane region and a cytoplasmic tail. We expressed the soluble domain of the human IL5 receptor α subunit (shIL5Rα) and human IL5 (hIL5) in Drosophila. Both hIL5 and shIL5Rα were immobilized separately through amine groups onto the carboxylated dextran layer of sensor chips of the BIAcore™ (Pharmacia) SPR biosensor after N-hydroxysuccinimide/carbodiimide activation of the chip surface. Interactions were measured for the complementary macromolecule, either shIL5Rα or hIL5, in solution. Kinetics of binding of soluble analyst to immobilized ligand were measured and from this the association rate constant, dissociation rate constant and equilibrium dissociation constant (Kd) were derived. With immobilized shIL5Rα and soluble hIL5, the measured Kd was 2 nM. A similar value was obtained by titration calorimetry. The Kd for Drosophila expressed receptor and IL5 is higher than the values reported for proteins expressed in different systems, likely due to differences in the methods of interaction analysis used for differences in protein glycosylation. Receptor-IL5 binding was relatively pH independent between pH 6.5 and 9.5. Outside this range the dissociation rate increased with compressibility little increased in association rate. The values obtained for the interaction of hIL5 and shIL5Rα were found to depend on which component was immobilized; the Kd was 5.5 nM with immobilized hIL5 and soluble shIL5Rα. The SPR biosensor provides a unified methodology to measure the interaction properties of shIL5Rα and hIL5 derivatives, mutants and mimetic as well as to evaluate potential antagonists of the receptor-cytokine interaction.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A combined theoretical and experimental study of the binding and interaction of valproic acid (VPA) with the bacterial cytochrome P450cam enzyme and the determination of regio- and stereoselective hydroxylation product distribution was performed. From the experiments, C4—;OH VPA was found to be the predominant hydroxylation product with a small amount of C5—OH VPA formed. The experimental stereoselectivity of hydroxylation was 2R4S 〉 ∼ 2S4R 〉 2R4R 〉 ∼ 2S4S and 2S5 〉 ∼ 2R5. The overall goals of the theoretical study were twofold: (1) to characterize as completely as possible, using energy optimization and molecular dynamics simulations, the interactions of flexible ligands with their target proteins, and (2) to determine the extent to which these results could be used to develop criteria to predict or explain the experimentally observed regio- and stereoselectivity of hydroxylation of the flexible ligands. Among the useful insights into the behavior of flexible ligands upon binding to their traget proteins obtained are (1) a large change in conformation occurs for many conformers of VPA upon binding to P450cam, (2) low- energy conformers of VPA do not necessarily lead to optimum interactions with the target protein, and (3) the most favorable mode of interaction of this flexible ligand with the protein binding site has been identified and found to be a result of strong electrostatic interactions between VPA and both Tyr96 and Asp297. For the study of the hydroxylated VPA products, the challenging aspect of this problem was to determine criteria for weighing the contribution of each of the possible protein-ligand complexes. To this end, various possibilities were examined and compared with the experimental results. No single complex was found to reproduce the observed experimental regio- and stereoselectivity. This result indicates that more than one bioactive form of VPA contributes to its oxidation. Results most consistent with experiment are obtained by using the interaction energy of the protein-ligand complex as a criterion for including its contribution to product formation. Although there are remaining disparities between predicted and observed product distributions, the combined theoretical and experimental effort has led to insights into the modes of interaction of this flexible ligand that lead to its observed product specificity. © 1993 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 11 (1990), S. 743-753 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Two approaches to the simulation of internal rotation potential energies in substituted ethanes are formulated for general applications. Called the vicinal Fourier coefficient and vicinal pair energy methods, they differ only in form. The latter procedure has the advantage of yielding energy terms that represent pairwise interactions between vicinal substitutents. As numerical examples, the potential energies of ethane and five of its simple methyl and chloro derivatives are employed to simulate the corresponding energies of two higher derivatives of the series. The initial energy data were calculated by the molecular mechanics method (MM2) with geometry optimizations and the ab initio MO procedure (STO-3G) with standard geometries. Results indicate that simulated energies are reasonably accurate for the flexible-rotor model (MM2) and extremely accurate for the rigid-rotor model (STO-3G). Deviations appear to be systematic and may be rationalized on the basis of molecular structure.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 11 (1990), S. 346-350 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Atomic partial charges for three model systems that mimic the metal-ligand moiety of the active site in the enzyme Cu, Zn superoxide dismutase (SOD) have been calculated at the ab initio level. The model systems include copper and zinc complexes with imidazole, formate and ammonia ligands. The partial charges thus obtained have been incorporated into force fields for molecular simulations. Simulations carried out with these force fields justify the need for specialized charge assignments for the metals and their ligands.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...