Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1058-8388
    Keywords: Olivocerebellar system ; Development ; Inferior olive ; Cerebellum ; Pattern formation ; Axon outgrowth ; Horseradish peroxidase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Many projection systems within the peripheral and central nervous system are topographically organized, and it has become increasinging clear that interactions which occur during development determine the projection patterns these systems exhibit in the adult. The olivocerebellar system was chosen as a model system for this study of afferent pattern formation because it has several characteristics which lend themselves to a study of this type. Applications of horseradish peroxidase were made to both the cerebellar primordium and to the inferior olive of embryonic and neonatal mice using an in vitro perfusion system to support the tissue during the transport period. Fibers labeled after restricted olivary applications are limited to particular mediolateral regions of the cerebellum. Similarly, olivary cells retrogradely labeled after discrete cerebellar applications are restricted to particular olivary subdivisions. The results indicate that the olivocerebellar projection displays elements of topographic organization as early as E15 and that the pattern displayed is roughly comparable to that of the adult mammal. The observed trajectories of olivocerebellar fibers and their concomitant association with both Purkinje and cerebellar nuclear cells during embryonic development suggests a role for either or both cell types in the pattern formation process. © 1993 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Developmental Dynamics 197 (1993), S. 244-254 
    ISSN: 1058-8388
    Keywords: Immunohistochemistry ; Granule cell ; Basket cell ; Stellate cell ; Cell proliferation ; Cell migration ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The cerebellum of the meander tail mutant mouse (mea/mea) is characterized by an apparently normal cytoarchitecture posteriorly with an abrupt transition to an abnormal anterior region. Anteriorly, there is abnormal folition, a drastic reduction in the granule cells (GC) population, disorganization of the Purkinje cells (PC), and a virtual absence of Bergmann glial processes. In this paper we analyze the prenatal and postnatal development of the cerebellum in the mea/mea and attempt to determine the phenotypic onset of the mutation in the anterior region. Hematoxylin and eosin stained sections reveal a morphological difference in the cerebellum of the mea/mea as early as embryonic day 16 characterized by a reduction in the external granule cell layer (EGL). The reduction in the EGL becomes increasingly apparent as development proceeds. This deficit in the EGL most probably results in the absence of GC, but it is unclear at this point whether reduced migration, proliferation, and/or increased cell death is the major factor. Interestingly, immunohistochemical staining with a monoclonal antibody against parvalbumin reveals that the basket and stellate cells, which are also thought to arise from the EGL, are present in the anterior region of the mea/mea cerebellum. These results suggest that the lack of GC in the meander tail is due to an early expressed abnormality of the EGL. However, the presence of the basket and/or stellate cells raises some interesting questions concerning the lineage of the cerebellar microneurons. © 1993 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 158 (1994), S. 39-46 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Proteoglycans play a role in regulating proliferation and adhesion of cells to each other and to the basal lamina. Synthesis of proteoglycans is disrupted by β-xylosides, which serve as alternate substrate sites for glycosaminoglycan chain attachment and therefore prevent glycosylation of the core protein. We have investigated the effects of p-nitrophenyl-β-D-xylopyranoside (PNP-xyloside) on cultured human keratinocytes. Stratified cultures were incubated for 7 days with PNP-xyloside (0.05-2.0 mM). Concentrations as low as 0.05 mM increased the secretion of free chondroitin sulfate by 10-15-fold over untreated cultures. Cellassociated proteoglycan decreased as PNP-xyloside concentration increased. At 2 mM PNP-xyloside, heparan sulfate as well as chondroitin sulfate addition to core proteins was disrupted: the core protein of epican, a heparan sulfate form of CD44 found on keratinocytes, was detected immunologically but lacked heparan sulfate. 2.0 mM PNP-xyloside reduced the number of attached cells by 20-25% after 7 days, but had little effect on morphology or protein synthesis. These results indicate that intact proteoglycans are not critical for maintaining epidermal keratinocyte stratification, cell-cell adhesion, or growth. © 1994 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...