Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chilling ; Growth (low temperature) ; Lycopersicon (chilling) ; Photosynthesis (chilling effects) ; Stomatal resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of unfavourable climatic conditions at the onset of the growth period on chilling-sensitive tomato (Lycopersicon esculentum Mill., cv. Abunda) was studied by exposing young plants to combinations of low temperature and low light (60–100 μmol quanta · m−2 · s−1) for several weeks. When the temperature did not decrease below a critical point (8 ° C) no loss of developmental capacity of the plants was detected. However, while new leaves were readily formed upon return to normal growth conditions (22/18 °C, day/night, in a greenhouse), net accumulation of biomass showed a lag phase of approximately one week. This delay was accompanied by a strong, irreversible inhibition of photosynthesis in the fully expanded leaves which had been exposed to the chilling treatment. When plants were subjected to temperatures below 8 ° C, survival rates decreased after three weeks at 6 ° C and irreversible damage of apical meristematic tissue occurred. Drought-hardening prior to chilling ensured survival at 6 ° C and protected the plants against meristem loss.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Chilling ; Chlorophyll fluorescence ; Lycopersicon (chilling) ; Photoinhibition ; Photosynthate partitioning ; Photosynthesis (chilling effects) ; Ribulose-1,5-bisphosphate carboxylase/oxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To identify possible reasons for the persisting impairment of photosynthesis after long-term chilling, young tomato (Lycopersicon esculentum Mill.) plants were exposed to 6–10° C for two weeks under low illumination during the daily light period (60–100 μmol quanta · m−2 · s−1). The time courses of leaf carbohydrate contents, phosphorylated intermediates and chlorophyll-fluorescence parameters were followed. While starch formation was impaired during chilling at 6° C, soluble sugar contents increased from the first day onwards and reached up to eightfold the values found in unchilled plants within two weeks. At 8 and 10° C, a less drastic increase in soluble-carbohydrate contents was observed. During chilling, glucose-6-phosphate and fructose-6-phosphate accumulated up to 16 mM (assuming they are restricted to the cytoplasm). At the same time, non-photochemical quenching of chlorophyll fluorescence had increased and did not return to control values during the first week of recovery. The 3-phosphoglyceric acid/triose phosphate ratio remained nearly unaffected by the chilling treatment, indicating that the assimilatory power of the plants was still high even at the low temperatures. As a consequence of the chilling treatment, ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) activity in the chilled leaves was irreversibly decreased. It is suggested that, in addition to a possible (orthophosphate-mediated) feedback inhibition by internal sugar accumulation, the low activity of Rubisco can play a significant role in the strong decrease of photosynthetic capacity during long-term chilling in tomato.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 1046-1053 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The development phase of the optical photolithography process has long been considered the most crucial, as it is the final image-forming step. Process monitoring methods have focused primarily on end point detection and have not used other inferable on-line information. This paper examines the use of mathematical models in conjunction with on-line development penetration data to determine process changes. An on-line sequential parameter identification scheme is used to calculate a current rate parameter value for the development model, and a Kalman filter is used to reduce erroneous observations caused by measurement noise. A powerful development monitor system results from the combination of real-time data, and on-line parameter and state estimation theory.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 926-938 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The deposition of thin films in a hot-wall multiwafer low-pressure chemical vapor deposition (LPCVD) reactor is an important unit operation in the manufacture of modern integrated circuits. In this article, our previously published model for the multiwafer LPCVD reactor has been combined with in-situ temperature measurements to accurately predict the axial and radial film thickness distributions for a polysilicon deposition process. The model describes in detail multicomponent mass transport, the reactor's thermal environment based on in-situ temperature measurements, and the reactor geometry including inlet and outlet sections as well as downstream injectors. Model predictions were compared with experimental data from two industrial-scale polysilicon reactors at SEMATECH and from a smaller research reactor. Approximate scale-up rules for the important special case of larger wafers were derived from the model equations and tested by simulation. The rules compare well with the results from a nonlinear program in which the axial variation of film growth rate was minimized.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...