Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In computational studies to understand the interaction of polycyclic aromatic hydrocarbons (PAHs) with biomolecular systems, the semiempirical method AM1 has been used previously to determine the geometry of the PAH and its metabolites and relevant intermediates. A number of studies have shown that AM1 provides geometries for parent PAHs that are acceptably close to experimentally determined structures. However, many of the properties that determine the manner by which PAHs interact with biological nucleophiles depend on the structure of metabolites and reactive intermediates where less experimental information is available. In a previous study, we used AM1 to obtain the molecular geometries of reactive intermediates of cyclopenta-PAHs (cPAHs) and then used single-point Hartree-Fock calculations, with the gaussian 3-21g basis set, to obtain molecular energies and charge distributions, in order to predict the direction of epoxide ring opening. Recent advances in the availability of computational hardware and software have provided other, more rigorous, methods for approaching this problem. In this study, we used hartree-fock methods in the gaussian series of programs employing the 3-21g and 6-31g basis sets and the local density functional method Dmol to obtain molecular geometries, energies, and charge distributions of the epoxides and the two potential hydroxycarbocations that could result from protonated ring opening, for a series of cPAHs. We have also performed the same calculations with AMSOL/SM2, a semiempirical method that adds the effect of the aqueous environment to the AM1 Hamiltonian. The division of the cPAHs into classes is not altered by these more rigorous calculations. The inclusion of water in the Hamiltonian has a greater effect on the results than using the ab initio methods to obtain the structure. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 41 (1992), S. 497-516 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Recently, some cyclopenta-fused polyaromatic hydrocarbons, an environmentally relevant subclass of chemicals, have been shown to have carcinogenic activity in animals. It has been suggested that benz[l] aceanthrylene (I), an active member of this subclass with a gulf region, has a trans dihydrodiol metabolite that is nonplanar and has two distinct spatial configurations. We have used MMP2(85) and AM1 to investigate the three-dimensional structure of this dihydrodiol and other similar derivatives of (I) and have found that although (I) is somewhat nonplanar the relevant derivatives are all nearly planar. Further, we have computed potential functions for the bending of the angular ring in the gulf region using MMP2(85), AM1, and ab initio computed energies for AM1 spatial configurations and find that these molecules all have only a single potential minimum. We have performed the same calculations for benzo[c]phenanthren and its 1,12 dimethyl derivative, molecules with a similar gulf region for which crystallographic data exists. In agreement with that data, we find that two distinct spatial configurations exist separated by significant barries. The differences between the results generated by the three different methods of computation will be discussed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The electrostatic potential V(r) that the nuclei and electrons of a molecule create in the surrounding space is well established as a guide in the study of molecular reactivity, and particularly, of biological recognition processes. Its rigorous computation is, however, very demanding of computer time for large molecules, such as those of interest in recognition interactions. We have accordingly investigated the use of an approximate finite multicenter multipole expansion technique to determine its applicability for producing reliable electrostatic potentials of dibenzo-p-dioxins and related molecules, with significantly reduced amounts of computer time, at distances of interest in recognition studies. A comparative analysis of the potentials of three dibenzo-p-dioxins and a substituted naphthalene molecule computed using both the multipole expansion technique and Gaussian 82 at the STO-5G level has been carried out. Overall we find that regions of negative and positive V(r) at 1.75 Å above the molecular plane are very well reproduced by the multipole expansion technique, with up to a 20-fold improvement in computer time.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 14 (1993), S. 422-437 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A procedure is reported for the prediction of dense crystal structures of C-, H-, N-, O-, and F-containing organic compounds in the primitive triclinic, monoclinic, and orthorhombic space groups with Z ≤ 4. The crystal environments of molecules in 242 crystal structures have been analyzed to determine the common coordination sphere pattens. This led to the development of the MOLPAK (MOLecular PAcKing) program, which uses a rigid-body molecular structure probe to build packing arrangements (possible crystal structures) in the various space groups. A MOLPAK search, which involves the investigation of all unique orientations of a central molecule and the construction of the appropriate coordination patterns about the central molecule, provides a 3-D map of minimum unit cell volume as a function of the orientation of the central molecule. MOLPAK uses a repulsion-only potential and a preset threshold to place molecules in contact with each other. The 5-10 smallest volume packing arrangements from a search are subjected to a lattice energy minimization refinement with the WMIN program to yield possible crystal structures. The results are described from the analyses of several known compounds starting with the crystal molecular structures as the MOLPAK search probes in the P1, P21, P21/c, and P212121 space groups. In addition, several examples are given in which the search probes were created by AM1 geometry optimization of preliminary molecular models. More extensive data are given in supplementary tables. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...