Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1436-5073
    Keywords: beryllium ; seawater ; Coprecipitation ; magnesium hydroxide ; tin(IV) hydroxide ; graphite furnace atomic absorption spectrometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Coprecipitation first with magnesium hydroxide, next with tin(IV) hydroxide is developed for the determination of traces of beryllium in sea-water. To a 200-ml sample is added a sodium hydroxide solution to form magnesium hydroxide at pH 11.5, on which beryllium is quantitatively coprecipitated. The precipitate is separated by centrifugation and dissolved in 2 ml of 12 mol/l hydrochloric acid. The resulting solution (ca. 10 ml) is mixed with 2 mg of tin (IV) carrier and the pH is adjusted to 5.0 to collect the beryllium on tin (IV) hydroxide, leaving magnesium ions in the solution. The tin (IV) hydroxide is centrifuged, dissolved in 0.1 ml of 5 mol/l hydrobromic acid, and then diluted to 1 ml with water. Magnesium is so added as to be 500 μg/ml for increasing the sensitivity about four times, and the beryllium in the solution is determined by graphite furnace atomic absorption spectrometry. The experiments with synthetic seawater samples showed that pg — μg amounts of beryllium can be coprecipitated on the metal hydroxides and beryllium at the low ng/1 level can be determined with reasonable precision (RSD 〈 10%). The detection limit of the proposed method is 0.5 ng/l of beryllium in seawater.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...