Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: cyanelles ; Cyanophora paradoxa ; peptidoglycan ; petH ; pre-ferredoxin-NADP+ reductase ; protein import
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA clone for pre-ferredoxin-NADP+ reductase (FNR) was obtained by screening a Cyanophora paradoxa expression library with antibodies specific for cyanelle FNR. The 1.4 kb transcript was derived from a single-copy gene. The precursor (41 kDa) and mature forms (34 kDa) of FNR were identified by western blotting of in vitro translation products and cyanelle extracts, respectively. The derived amino acid sequence of the mature form was corroborated by data from N-terminal protein sequencing and yielded identity scores from 58% to 62% upon comparison with cyanobacterial FNRs. Sequence conservation seemed to be even more pronounced in comparison with enzymes from higher plants, but using the neighbor joining method the C. paradoxa sequence was clearly positioned between the prokaryotic and eukaryotic sequences. The transit peptide of 65 or 66 amino acids appeared to be totally unrelated to those from spinach, pea and ice plant but showed overall characteristics of stroma-targeting peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 224 (1990), S. 222-231 
    ISSN: 1617-4623
    Keywords: Cyanophora paradoxa ; Cyanelle ; Ribosomal protein gene ; S10-spc operon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In Cyanophora paradoxa photosynthetic organelles termed cyanelles perform the functions of chloroplasts in higher plants, while the structural and biochemical characteristics of the cyanelle are essentially cyanobacterial. Our interest in studying the evolutionary relationship between cyanelles and chloroplasts led us to focus on cyanelle-encoded genes of the translational apparatus, specifically genes equivalent to those of the bacterial S10 and spc operons. The structure of a large ribosomal protein gene cluster from cyanelle DNA was characterized and compared with that from plastids and bacteria. Sequences of the following cyanelle genes encompassing 4.8 kb are reported here: 5′-rpl22-rps3-rpl16-rps17-rpl14-rpl5-rps8-rpl6-rpl18-rps5-3′. Cyanelles contain five more ribosomal protein genes than do higher plant chloroplasts and four more genes than Euglena gracilis plastids in the S10/spc region of this gene cluster. The gene encoding rpl36 is absent, in contrast to the case in other plastid DNAs. These genes, including the previously characterized genes rpl3, rpl2 and rps19, are transcribed as a primary transcript of ∼7500 nucleotides. The occurrence of transcripts smaller than this presumptive primary transcript suggests that it is processed into defined segments. Transcription terminates 3′ of rps5 where a 40 by hairpin with one mismatch (−42.2 kcal) may be folded. Immediately downstream of rps5 an open reading frame, ORF492, is contained on a separate transcript. A comparison of gene content, operon structure and deduced amino acid sequence of the genes in the S10 and spc operons from different organisms supports the notion that cyanelles are intermediary between known plastids and cyanobacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...