Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • Enzyme activity  (1)
  • cattle  (1)
  • 1
    ISSN: 1432-0789
    Keywords: Earthworms ; Enzyme activity ; Microbial biomass ; Pasture ; Soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We investigated the quantity and distribution of organic C, microbial biomass C, protease, arylsulphatase and arylphosphatase activity, and earthworm numbers and biomass in the soil from a 37-year-old grazed pasture supplied with superphosphate at rates of 0, 188, and 376 kg ha-1 annually. The results were compared with a non-irrigated wilderness site which had not been used for agriculture and an arable site that had been intensively cultivated for 11 consecutive years. In the 0- to 5-cm layer, organic C followed the trend arable〈wilderness = control〈low phosphate = high posphate and soil biological activity generally followed a similar trend. For example, protease and arylsulphatase activity and microbial biomass C followed the order arable〈wilderness〈control〈low phosphate = high phosphate. The greater activity in the control than the wilderness site was attributed to the more regular turnover of organic matter throughout the year in the control due to the activity of the grazing animals. Earthworm numbers increased in the order arable〈wilderness〈control〈low phosphate〈high phosphate. In the improved pasture sites the earthworm population was dominated by Aporrectodea caliginosa (77–89% of total numbers) although Lumbricus rubellus made an increasing contribution to the population with increasing superphosphate rates. In the unirrigated wilderness site the population consisted of 56% A. caliginosa and 44% L. rubellus. While Octolasion cyaneum and A. rosea made up a small proportion of the population in the improved pasture sites, they were not present in the wilderness or arable sites. A. caliginosa was the only species present in the arable site. The mean fresh weight of individuals followed the order arable〈control = low phosphate = high phosphate〈wilderness and the proportion of jeveniles in the population was greatest in the arable and lowest in the wilderness site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: cattle ; nitrate leaching ; nitrogen transformations ; pasture soil ; sheep ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Three field experiments were carried out to compare cattle and sheep urine patches in relation to (i) initial wetting pattern and volume of soil affected, (ii) soil solution ionic composition and (iii) the fate of15N-labelled urine in the soil over the winter period. The distribution of Br− (used as a urine tracer) across the soil surface and down the profile was irregular in all the patches. The pasture area covered by Br− in the sheep patches was 0.04–0.06 m2 and Br− was detected to a depth of 150 mm. Cattle patches were significantly larger covering a surface area of 0.38–0.42 m2 and penetrating to a depth of 400 mm. The rapid downward movement of urine occurred through macropore flow but even so, over half of the applied Br− was detected in the 0–50 mm soil layer in both sheep and cattle patches. Due to the larger volume of urine added to the cattle patches (2000 mL for cattle and 200 mL for sheep) the effective application rate was about 5 L m−2 compared with 4 L m−2 for sheep. Concentrations of extractable mineral N and ionic concentrations in soil solution were higher in cattle than sheep patches particularly near the soil surface. In both sheep and cattle patches, urea was rapidly hydrolysed to NH 4 + and nitrification occurred between 14 and 29 days after urine application. Initially the major anions and cations in the soil solution were HCO 3 − , SO 4 = , Cl−, NH 4 + , Mg++, K+ and Na+, which were derived from the urine application. Ionic concentrations in the soil solution decreased appreciably over time due to plant uptake and possibly some leaching. As nitrification proceeded, NO 3 − became the dominant anion in soil solution and the major accompanying cation was Ca++. The fate of15N-labelled urine-urea was followed during a 5 month period beginning in late autumn. Greater leaching losses of NO 3 − occurred below cattle patches (equivalent to 60 kg N ha−1 below 300 mm and 37 kg N ha−1 below 600 mm) compared with sheep patches (10 kg N ha−1 below 300 mm and 1 kg N ha− below 600 mm). While 6% of the applied15N was leached the amount of N leached was equivalent to 11% of the applied urine-N in cattle patches. This suggests that there was significant immobilsation-mineralisation turnover in urine patch soil with the release of mineral N from native soil organic matter. In both sheep and cattle patches 60% of the15N was accounted for in plant uptake, remaining in the soil and leaching. About 40% of the applied N was therefore lost through gaseous emission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...