Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
  • Fruit photosynthesis  (1)
  • Silversword  (1)
  • 1
    ISSN: 1432-1939
    Keywords: Argyroxiphium sandwicense ; Energy balance ; Heat tolerance ; Leaf pubescence ; Silversword
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of leaf pubescence and rosette geometry on thermal balance were studied in a subspecies of a Hawaiian giant rosette plant, Argyroxiphium sandwicense. This species, a member of the silversword alliance, grows above 2000 m elevation in the alpine zone of two Hawaiian volcanoes. Its highly pubescent leaves are very reflective (absorptance in the 400–700 nm waveband=0.44). Temperature of the expanded leaves was very similar to, or even lower than, air temperature during clear days, which was somewhat surprising given that solar radiation at the high elevation sites where this species grows can exceed 1100 W m−2. However, the temperature of the apical bud, which is located in the center of the parabolic rosette, was usually 25°C higher than air temperature at midday. Experimental manipulations in the field indicated that incoming solar radiation being focussed towards the center of the rosette resulted in higher temperatures of the apical bud. Attenuation of wind speed inside the rosette, which increased the thickness of the boundary layer surrounding the apical bud, also contributed to higher temperatures. The heating effect on the apical bud of the large parabolic rosette, which apparently enhances the rates of physiological processes in the developing leaves, may exclude the species from lower elevations by producing lethal tissue temperatures. Model simulations of apical bud temperatures at different elevations and laboratory estimates of the temperature threshold for permanent heat injury predicted that the lower altitude limit should be approximately 1900 m, which is reasonably close to the lower limit of distribution of A. sandwicense on Haleakala volcano.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Isomeris arborea ; Fruit photosynthesis ; Recycling of internally supplied CO2 ; Carbon balance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The photosynthetic capacity and carbon metabolism of the fruits of Isomeris arborea (Capparidaceae), an evergreen shrub endemic to the desert and coastal habitats of Southern California and Baja California, are described. The inflated structure of the pods of I. arborea provides a model system for experimental studies of fruit photosynthesis in native plants since the gas concentration of the internal space can be manipulated and monitored separately from the external pod environment. CO2 released by seed respiration is partially contained in the inner gas space of the pods, resulting in an elevated CO2 environment inside the fruit (500 to 4000 μmol mol−1 depending on the stage of fruit development). A portion of this CO2 is assimilated by the inner layers of the pericarp, but a larger fraction leaks out. The photosynthetic layers of the pericarp use two different sources of CO2: the exocarp fixes exogenous CO2 while the endocarp fixes CO2 released by seed respiration into the pod cavity. Even though the total weight of the fruit increases during development, the combined rates of fixation of externally and internally supplied CO2 remained constant (10–11 μmol CO2 pod−1 h−1). After the pods attain maximum volume, the major change in gas exchange that takes place during fruit growth is a gradual increase in the amount of respiratory CO2 released by the seeds. This shifts the CO2 balance of the fruit from positive, in young fruits, to negative in mature fruits. Pericarp photosynthesis helped support not only the cost of fruit maintenance, but also the cost of fruit growth, particularly during the first stages of fruit development. During later fruiting stages insufficient carbon is fixed to fully supply either respiration or growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...