Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (5)
  • Fura-2  (4)
  • K+ channel
  • 1
    ISSN: 1432-2013
    Keywords: Ca2+ influx ; Nystatin perforated patchclamp technique ; Fura-2 ; HT29 ; ATP ; Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Indirect evidence has accumulated indicating a voltage dependence of the agonist-stimulated Ca2+ influx into epithelial cells. Manoeuvres expected to depolarise the membrane voltage during agonist stimulation resulted in: (1) a decrease of the sustained phase of the adenosine triphosphate (ATP, 10−5 mol/l)-induced intracellular Ca2+ transient, (2) a reduced fura-2 Mn2+-quenching rate, and (3) prevention of the refilling of the agonist-sensitive store. To quantify the change in intracellular Ca2+ as a function of membrane voltage, we measured simultaneously the intracellular Ca2+ activity ([Ca2+]i) with fura-2 and the electrical properties using the nystatin perforated patch-clamp technique in single HT29 cells. Ca2+ influx was either stimulated by ATP (10−5 mol/l) or thapsigargin (TG, 10−8 mol/l). After [Ca2+]i reached the sustained plateau phase we clamped the membrane voltage in steps of 10 mV in either direction. A stepwise depolarisation resulted in a stepwise reduction of [Ca2+]i. Similarly a stepwise hyperpolarisation resulted in a stepwise increase of [Ca2+]i (ATP: 27.5±10 nmol/l per 10 mV, n=6; TG: 19 ±7.9 nmol/l per 10 mV, n=12). The summarised data show a linear relationship between the Δ fluorescence ratio 340/380 nm change and the applied holding voltage. In unstimulated cells the same voltage-clamp protocol did not change [Ca2+]i (n=9). Under extracellular Ca2+-free conditions [Ca2+]i remained unaltered when changing the membrane voltage. These data provide direct evidence that the Ca2+ influx in epithelial cells is membrane voltage dependent. Our data indicate that small changes in membrane voltage lead to substantial changes in [Ca2+]i. This may be due either to a change of driving force for Ca2+ into the cell, or may reflect voltage-dependent regulation of the respective Ca2+ entry mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: ADH ; V1 receptor ; dDAVP ; Intracellular Ca2+ ; Fura-2 ; In vitro microperfusion ; Rabbit kidney ; Cortical thick ascending limb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect of antidiuretic hormone ([Arg]vasopressin, ADH) on intracellular calcium activity [Ca2+]i of isolated perfused rabbit cortical thick ascending limb (cTAL) segments was investigated with the calcium fluorescent dye fura-2. The fluorescence emission ratio at 500–530 nm (R) was monitored as a measure of [Ca2+]i after excitation at 335 nm and 380 nm. In addition the transepithelial potential difference (PD te) and transepithelial resistance (R te) of the tubule were measured simultaneously. After addition of ADH (1–4 nmol/l) to the basolateral side of the cTAL R increased rapidly, but transiently, from 0.84±0.05 to 1.36±0.08 (n = 46). Subsequently, within 7–12 min R fell to control values even in the continued presence of ADH. The increase in R evoked by the ADH application corresponded to a rise of [Ca2+]i from a basal level of 155±23 nmol/l [Ca2+]i up to 429±53 nmol/l [Ca2+]i at the peak of the transient, as estimated by intra- or extracellular calibration procedures. The electrical parameters (PD te and R te) of the tubules were not changed by ADH. The ADH-induced Ca2+ transient was dependent on the presence of Ca2+ on the basolateral side, whereas luminal Ca2+ had no effect. d(CH2)5[Tyr(Me)2]2,Arg8vasopressin, a V1 antagonist (Manning compound, 10 nmol/l), blocked the ADH effect on [Ca2+]i completely (n = 5). The V2 agonist 1-desamino-[d-Arg8]vasopressin (10 nmol/l, n=4), and the cAMP analogues, dibutyryl-cAMP (400 μmol/l, n = 4), 8-(4-chlorophenylthio)-cAMP (100 μmol/l, n = 1) or 8-bromo-cAMP (200 μmol/1, n = 4) had no influence on [Ca2+]i. The ADH-induced [Ca2+]i increase was not sensitive to the calcium-channel blockers nifedipine and verapamil (100 μmol/l, n = 4). We conclude that ADH acts via V1 receptors to increase cytosolic calcium activity transiently in rabbit cortical thick ascending limb segments, possibly by an initial Ca2+ release from intracellular stores and by further Ca2+ influx through Ca2+ channels in the basolateral membrane. These channels are insensitive to L-type Ca2+ channel blockers, e.g. nifedipine and verapamil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 428 (1994), S. 583-589 
    ISSN: 1432-2013
    Keywords: Ca2+ influx ; Fura-2 ; CFPAC-1 ; Flufenamate ; Gd3+ ; ATP ; Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The relevant influx pathway for stimulated Ca2+ entry into epithelial cells is largely unknown. Using flufenamate (Flu) and Gd3+, both known pharmacological blockers of non-selective cation currents in other epithelial preparations, we tested whether the stimulated Ca2+ entry in CFPAC-1 cells was inhibited by these agents. Transmembraneous Ca2+ influx into CFPAC-1 cells was stimulated by either ATP (10−4 and 10−5 mol/l), carbachol (CCH, 10−4 mol/l) or thapsigargin (TG, 10−8 mol/l). Three different experimental approaches were used. (1) Because the plateau phase of an agonist-induced [Ca2+]i transient reflects Ca2+ influx into these cells, we investigated the influence of Flu and Gd3+ on the level of the stimulated [Ca2+]i plateau. (2) The fura-2 Mn2+-quenching technique was used to visualise divalent cation entry and monitor its inhibition. (3) During the “refilling period” after agonist-induced discharge of the intracellular pools the putative influx inhibitors Flu and Gd3+ were given and subsequently the filling state of the agonist-sensitive intracellular stores tested. The results from the first experimental approach showed that both Flu and Gd3+ were potent inhibitors of the stimulated Ca2+ entry in CFPAC-1 cells. Flu reversibly decreased the ATP-induced [Ca2+]i plateau in a concentration dependent manner, with an IC50 value of 33 μmol/l (n = 6). Similar results were obtained for the CCH-(n = 5) and the TG-induced (n = 5) [Ca2+]i plateau. Gd3+ concentration dependently inhibited the stimulated Ca2+ plateau. A complete block of the ATP-induced [Ca2+]i plateau was seen at 0.5 μmol/l (ATP 10−5 mol/l, n = 8). The second approach showed that Flu (10−4 mol/l) completely inhibited the ATP- (10−5 mol/l, n = 3), CCH-(10−4 mol/l, n = 4) and TG-(10−8 mol/l, n = 3)-induced fura-2 Mn2+ quench. Gd3+ also inhibited the fura-2 Mn2+-quenching rate (n = 9). The third approach showed that Flu (n = 6) and Gd3+ (n = 8) inhibited the refilling of the ATP-sensitive intracellular Ca2+ store. These results show that inhibitors of non-selective cation currents in other epithelial preparations are potent inhibitors of stimulated Ca2+ influx in CFPAC-1 cells. Whether this inhibitory effect concerns a non-selective cation channel remains to be established.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 426 (1994), S. 328-332 
    ISSN: 1432-2013
    Keywords: Cortical collecting duct ; K+ channel ; Rat ; Isolated tubule ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Ion channel current amplitudes (μ) and open probabilities (P o) have been analysed so far by defining a 50% threshold to distinguish between open and closed states of the channels. With this standard method (SM) it is very difficult or even impossible to analyse channels of different size in one membrane patch correctly. A stochastical model, named the hidden Markov model (HMM), separates between observation noise and the stochastic process of opening and closing of ion channels. The HMM allows the independent analysis of μ, P o, and mean dwell times (τ) of different channels in one membrane patch, without defining threshold levels. Using this method errors in the analysis are not summarized like in the SM because all different analysing procedures (e. g. filtering, setting of threshold, fitting processes) are done in one step. Two different K+ channels in excised basolateral membranes of the cortical collecting duct of rat (CCD) were analysed by the SM and the HMM. The μ value of the intermediate-conductance K+ channel (i-K+) was 3.9±0.1 pA (SM) and 3.8±0.2 pA (HMM) for 11 observations. The P o value of this channel was 10.2±4.2% (SM) and 10.1±4.0% (HMM). The mean τ values were 5.4±0.6 ms for the open state and 9.6±2.2 ms and 145±21 ms for the closed states (SM) and 7.8±1.1 ms, 7.7±0.9 ms and 148±24 ms (HMM), respectively. For seven small-conductance K+ (s-K+) channels, which were found in the same membrane patches as the i-K+, an accurate analysis of P o and τ was not possible with the SM. The μ value was 1.0±0.1 (SM), 0.9±0.1 (HMM) pA. P o was 16.6±4.6%, the open τ value was 11.1±2.8 ms, and the closed τ value was 34.9±8.5 ms. The HMM allows the analysis of single-channel currents, P o, and mean τ values when different or more than one ion channel(s) are colocalized in one membrane patch. Where analysis with the SM was possible results did not significantly differ from those obtained with the HMM. Thus for this kind of analysis the method of setting a 50% threshold appears justified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 423 (1993), S. 519-526 
    ISSN: 1432-2013
    Keywords: Carbachol ; Adenosine triphosphate ; Neurotensin ; Fura-2 ; Intracellular Ca2+ ; Ca2+ influx ; Mn2+ ; Verapamil ; Ni2+
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In the present study we have investigated the mechanism of intracellular Ca2+ activity ([Ca2+]i) changes in HT29 cells induced by adenosine triphosphate (ATP), carbachol (CCH), and neurotensin (NT). [Ca2+]i was measured with the fluorescent Ca2+ indicator fura-2 at the single-cell level or in small cell plaques with high time resolution (1–40Hz). ATP and CCH induced not only a dose-dependent [Ca2+]i peak response, but also changes of the plateau phase. The [Ca2+]i plateau was inversely dependent on the ATP concentration, whereas the CCH-induced [Ca2+]i plateau increased at higher CCH concentrations. NT showed (from 10−10 to 10−7 mol/l) in most cases only a [Ca2+]i spike lasting 2–3 min. The [Ca2+]i plateau induced by ATP (10−6 mol/l) and CCH (10−5 mol/l) was abolished by reducing the Ca2+ activity in the bath from 10−3 to 10−4 mol/l (n=7). In Ca2+-free bathing solution the [Ca2+]i peak value for all three agonists was not altered. Using fura-2 quenching by Mn2+ as an indicator of Ca2+ influx the [Ca2+]i peak was always reached before Mn2+ influx started. Every agonist showed this delayed stimulation of the Ca2+ influx with a lag time of 23±1.5 s (n=15) indicating a similar mechanism in each case. Verapamil (10−6–10−4 mol/l) blocked dose dependently both phases (peak and plateau) of the CCH-induced [Ca2+]i increase. Short pre-incubation with verapamil augmented the effect on the [Ca2+]i peak, whereas no further influence on the plateau was observed. Ni2+ (10−3 mol/l) reduced the plateau value by 70%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...