Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • Nitrogen and photosynthesis  (2)
  • Quantum yield  (2)
  • Key words NIDDM, insulin secretion, fetal growth, programming.  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 37 (1994), S. 592-596 
    ISSN: 1432-0428
    Keywords: Key words NIDDM, insulin secretion, fetal growth, programming.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent studies suggest that NIDDM is linked with reduced fetal and infant growth. Observations on malnourished infants and studies of experimental animals exposed to protein energy or protein deficiency in fetal or early neonatal life suggest that the basis of this link could lie in the detrimental effects of poor early nutrition on the development of the beta cells of the islets of Langerhans. To test this hypothesis we have measured insulin secretion following an IVGTT in a sample of 82 normoglycaemic and 23 glucose intolerant subjects who were born in Preston, England, and whose birthweight and body size had been recorded at birth. The subjects with impaired glucose tolerance had lower first phase insulin secretion than the normoglycaemic subjects (mean plasma insulin concentrations 3 min after intravenous glucose 416 vs 564 pmol/l, p =0.04). Insulin secretion was higher in men than women (601 vs 457 pmol/l, p =0.02) and correlated with fasting insulin level (p =0.04). However, there was no relationship between insulin secretion and the measurements of prenatal growth in either the normoglycaemic or glucose intolerant subjects. These results argue against a major role for defective insulin secretion as a cause of glucose intolerance in adults who were growth retarded in prenatal life. [Diabetologia (1994) 37: 592–596]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clonal tissue of the marine chlorophyte macroalga, Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease in F m, and partially recovered over several days. Under the added stress of N deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, but P m decreased by 50% over one week, indicating inability to acclimate to high light. Both ϕ and F v/F m decreased markedly on the first day and did not significantly recover. Changes in F o, F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevated R d and declining P m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency in U. rotundata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clonal tissue of the marine chlorophyte macroalga,Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease inF m, and partially recovered over several days. Under the added stress ofN deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, butP m decreased by 50% over one week, indicating inability to acclimate to high light. Bothϕ andF v/F m decreased markedly on the first day and did not significantly recover. Changes inF o,F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevatedR d and decliningP m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency inU. rotundata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...