Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-2746
    Keywords: Grain boundaries ; computer simulation ; free energy ; segregation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Atomistic simulations of segregation to [001] Σ5 twist boundaries in Cu−Ni, Au−Pd, and Ag−Au alloy systems have been performed for a wide range of temperatures and compositions within the solid solution region of these alloy phase diagrams. In addition to the grain boundary segregation profiles, grain boundary free energies, enthalpies, and entropies were determined. These simulations were performed within the framework of the free energy simulation method, in which an approximate free energy functional is minimized with respect to atomic coordinates and atomic site occupation. For all alloy bulk compositions (0.05 ≤ C ≤ 0.95) and temperatures (400 ≤ T (K) ≤ 1,100) examined, Cu and Au segregates to the boundary in the Cu−Ni and Au−Pd alloy systems, respectively; although in the Ag−Au alloys, the majority element segregates to the boundary. The width of the segregation profile is limited to approximately three to four (002) atomic planes. The classical theories for the segregation, and the effects of the relaxation with respect to either the atomic positions or the atomic concentrations, are discussed. The boundary thermodynamic properties depend sensitively on the magnitude of the boundary segregation, and some of them are shown to vary linearly with the magnitude of the grain boundary segregation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Interface science 1 (1993), S. 7-30 
    ISSN: 1573-2746
    Keywords: Surfaces ; computer simulation ; free energy ; segregation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Atomistic simulations of segregation to (100) free surface in Ag−Au, Au−Pd, and Cu−Ni alloy systems have been performed for a wide range of temperatures and compositions within the solid solution region of these alloy phase diagrams. In addition to the surface segregation profiles, surface free energies, enthalpies, and entropies were determined. These simulations were performed within the framework of the free energy simulation method, in which an approximate free energy functional is minimized with respect to atomic coordinates and atomic site occupation. The effects of the relaxation with respect to either the atomic positions or the atomic concentrations are discussed. For all alloy bulk compositions (0.05 ≤ C ≤ 0.95) and temperatures (400 ≤ T(K) ≤ 1,100) examined, Ag, Au, and Cu segregates to the surface in the Ag−Au, Au−Pd, and Cu−Ni alloy systems, respectively. The present results are compared with several theories for segregation. The resultant segregation profiles in Au−Pd and Ag−Au alloys are shown to be in good agreement with an empirical segregation theory, while in Cu−Ni alloys the disagreement in Ni-rich alloys is substantial. The width of the segregation profile is limited to approximately three to four atomic planes. The surface thermodynamic properties depend sensitively on the magnitude of the surface segregation, and some of them are shown to vary linearly with the magnitude of the surface segregation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...