Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 29 (1990), S. 400-408 
    ISSN: 1435-1528
    Keywords: Relaxation spectrum ; monodisperse polymers ; scaling ; glass transition ; plateau modulus ; recoverable compliance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The analysis of dynamic mechanical data indicates that linear flexible polymer chains of uniform length follow a scaling relation during their relaxation, having a linear viscoelastic relaxation spectrum of the formH(λ) = n 1 G N 0 × (λ/λ max) n1 forλ≤λ max. Data are well represented with a scaling exponent of about 0.22 for polystyrene and 0.42 for polybutadiene. The plateau modulusG N 0 is a material-specific constant and the longest relaxation time depends on the molecular weight in the expected way. At high frequencies, the scaling behavior is masked by the transition to the glassy response. Surprisingly, this transition seems to follow a Chambon-Winter spectrumH(λ) = Cλ−n2, which was previously adopted for describing other liquid/solid transitions. The analysis shows that the Rouse spectrum is most suitable for low molecular-weight polymersM ≈ M c , and that the de Gennes-Doi-Edwards spectrum clearly predicts terminal relaxation, but deviates from the observed behavior in the plateau region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...