Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above −2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to −5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Pressure-volume measurements were made on Artemisia tridentata Nutt. ssp. tridentata samples rehydrated for 0, 1.5, 3, 6 or 24 h. Increasing rehydration time caused a significant increase in osmotic potential at turgor loss, cell elasiticity, and the relative water content at turgor loss, and a significant decrease in pressure potential at saturation. Osmotic potential at saturation was changed significantly by rehydration, but no consistent trend was observed. The symplastic water fraction did not differ significantly among treatments. The increase in the osmotic potential at turgor loss did not correspond with decreasing cell elasticity or synthesis of solutes. Instead, the leaf solute content remained constant suggesting a redistribution of solutes between the symplast and apoplast. Using non-rehydrated samples for pressure-volume analysis introduced errors in estimates of the symplastic water fraction, osmotic potential at full turgor, and the relative water content at turgor loss. These errors are due to uncertainties in the determination of saturated weights.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 97 (1994), S. 512-519 
    ISSN: 1432-1939
    Keywords: Plant invasion ; Drought acclimation Hawaii ; Heteropogon contortus ; Pennisetum setaceum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The alien grass, Pennisetum setaceum, dominates many of the lowland arid regions that once supported native Heteropogon contortus grassland on the island of Hawaii. Response to drought in a glasshouse was compared between these C4 grasses to test if success as an invader is related to drought tolerance or plasticity for traits that confer drought tolerance. Pennisetum produced 51% more total biomass, allocated 49% more biomass to leaves, and had higher net photosynthetic rates (P n) on a leaf area basis than Heteropogon. Plants of both species under drought produced less total biomass and increased their allocation to roots compared to well-watered plants, but there was no difference between the two species in the magnitude of these responses. The decline in P n with decreasing leaf water potential (ψ1) was greater for Pennisetum compared to Heteropogon. Plasticity in the response of P n to ψ1, osmotic potentials, and the water potentials at turgor loss in response to drought were not different between the two species. Stomata were more responsive to Δw in Heteropogon than in Pennisetum and for well-watered plants compared to droughted plants. Plasticity for the stomatal response to Δw, however, was not different between the species. There was no evidence that the alien, Pennisetum, had greater plasticity for traits related to drought tolerance compared to the native, Heteropogon. Higher P n and greater biomass allocation to leaves resulted in greater growth for Pennisetum compared to Heteropogon and may explain the success of Pennisetum as an invader of lowland arid zones on Hawaii.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...