Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4205-4218 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present differential cross section (DCS) measurements for scattering of HF by Ar. These crossed-beam experiments employ rotational state sensitivity, allowing determination of the DCS as a function of the scattered HF rotational state. The initial HF rotational distribution is generated by nozzle expansion, without further state selection. Its composition is mostly J=0 and J=1, with small admixtures for J〉1. The DCS for each final state J' is measured using a stabilized cw HF chemical laser, in conjunction with a rotatable liquid He-cooled bolometer. Measurable signals are obtained for scattering into 0≤J'≤5, where J'=6 is the thermodynamic limit for our collision energy of 120 meV. The measured DCS's show a strong forward peak, largely from elastic scattering. In addition, the DCS's evolve from a broad shoulder in the θ≈25°–40° region for J'=0—through a flattening of the wide-angle scattering for J'=2 and J'=3—to an increase in the scattering beyond ∼40° for J'=4. The DCS for scattering into J'=5 also shows increased intensity at wide scattering angles, but its onset is delayed until ∼70°. These features are shown to be independent of the laboratory → center-of-mass kinematic transformation. The wide-angle scattering into J'=4 and J'=5 corresponds to transferring up to 40% and 60%, respectively, of the available kinetic energy into HF rotation. Since the center-of-mass scattering angles are up to ∼110°, we interpret the observed features for J'=4–5 in terms of rotational rainbow scattering from the hard core of the HF+Ar potential energy surface. The origin of the shoulder for J'=0 scattering is less clear, but it may arise from the strongly anisotropic nature of the HF+Ar van der Waals attraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 189-196 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have carried out a systematic study of the 248 nm excimer-laser photodissociation of small methyl iodide clusters in a free jet expansion. Ground electronic state I2 is formed from the photolysis of methyl iodide dimers and detected via the laser induced fluorescence (LIF) excitation spectrum of the (B–X) transition. The internal energy of the I2 is approximately 2.5 kJ/mol and is the same for CH3I seeded in CO2, Ar, Xe, O2, and He, as well as for the neat expansion and deuterated sample. A room temperature flow cell experiment shows that the reaction channel I*+CH3I→I2+CH3I does not contribute to the measured I2 signal. The results strongly imply that a cluster-induced cooperative effect is responsible for the I2-producing chemistry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 4700-4706 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Dimers and other small clusters of CH3I, C2H5I, i- and n-C3H7I, HI, CF3I, CH3Br, and C2H5Br formed in a supersonic expansion are irradiated at 248 and 193 nm and the halogen molecule product probed via laser induced fluorescence spectroscopy. Both dimers and larger clusters of RI (R=H, alkyl) excited at each wavelength yield I2 in its ground electronic state with very little internal energy. Clusters of CF3I and those containing alkyl bromides do not give halogen molecule products after excitation at either wavelength. A model for the dynamics in the dimer excited state which explains these results is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 65 (1994), S. 3587-3588 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: An intense supersonic beam of atomic fluorine has been generated using nozzles fabricated from single-crystal CaF2 and MgF2. The latter material has been tested up to 1000 °C with no observable damage. This is (approximately-greater-than)250 °C hotter than previously achieved, increasing the atomic beam intensity by (approximately-greater-than)5×.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...