Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: metabolite ; mean residence time ; first-pass metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Metabolite kinetics after oral drug administration can be determined, without separate metabolite administration, using the concepts of mean residence time (MRT). The MRT of parent drug and metabolite after oral administration of the parent drug, MRTp,p(oral) and MRTm,p(oral), can be calculated directly from the drug and metabolite profiles. The difference between MRTm,p(oral) and MRTp,p(oral), termed Delta MRT, yields an estimate of MRT of metabolite when the metabolite is given as an iv bolus, MRTm,m(iv). The calculation is simple for drugs that are known to undergo negligible first-pass metabolism. Correction can also be made when extent of first-pass metabolism is known. Ambiguity is encountered, however, when the degree of first-pass metabolism is unknown. When the delta MRT is negative, then first-pass metabolism must be considered. A positive value of delta MRT, on the other hand, is not a definitive indication of the absence of first-pass metabolism. It may occur in the presence or absence of first-pass metabolism. Ignoring the possibility of first-pass metabolism when a positive value of delta MRT occurs may lead to an incorrect estimate of MRTm, m(iv). The estimation error is relatively small, however, when MRTm,m(iv) ≫ MRTp,p(iv), even when first-pass metabolism is extensive. This situation may apply to the administration of a prodrug.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 5 (1993), S. 407-413 
    ISSN: 0899-0042
    Keywords: stereoselecting ; drug metabolism ; drug interactions ; cytochrome P-45 ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A surprisingly large number of marketed drugs are racemic mixtures. The pharmacokinetic literature on racemic drugs contains a vast amount of information on drug-drug interactions derived from the measurement of total drug concentrations in plasma and urine. The appreciation of the role of stereochemistry in drug interactions with racemic warfarin resulted in a long-overdue scientific rigor being applied to the study of drug interactions. It also compelled us to recognize that much of the literature was uninterpretable. A better understanding of oxidative metabolism, particularly the complexity of the cytochrome P-450 family of enzymes, has also strengthened the scientific basis of drug interactions. We now recognize that investigators and clinicians must consider both stereoselectivity and isozyme selectivity in the study of drug interactions to understand the nature of the interaction so as to more effectively use new and potent drugs. © 1993 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0899-0042
    Keywords: warfarin ; human liver ; competitive inhibitor ; chiral interactions ; kinetics ; enantiomers ; racemate ; drug metabolism ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Inhibition of the metabolism of (S)-warfarin, the more pharmacologically active enantiomer of the racemic drug, by (R)-warfarin was investigated in microsomes obtained from three human livers. In each case the production of both (S)-6- and (S)-7-hydroxywarfarin was found to be competitively inhibited by (R)-warfarin. The Kis for inhibition of (S)-6- and (S)-7-hydroxylation by (R)-warfarin ranged from 7.0 to 8.4 μM and from 6.0 to 6.9 μM, respectively, while the Kms for the 6- and 7-hydroxylation of (S)-warfarin ranged from 3.6 to 3.8 μM and from 3.3 to 3.9 μM, respectively. In contrast, except for the 4′-hydroxylation pathway (S)-warfarin was found to be a weak inhibitor of the metabolism of (R)-warfarin. Possible implications of these findings include the following: (1) the kinetic parameters defining the interactions of two enantiomers of a racemic drug with the cytochrome P-450s or other macromolecular systems in the living organism can only be properly defined from experiments with the pure enantiomers, (2) an enantiomer of a racemic drug may contribute significantly to biological effect not by its inherent activity but by altering the pharmacokinetics of the eutomer, and (3) enantiomeric interactions are not easily detected unless directly sought and may be relatively common.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...