Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; insulin sensitivity ; peripheral glucose utilisation ; non-esterified fatty acids ; risk group
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The mechanisms underlying insulin resistance in Type 2 (non-insulin-dependent) diabetes mellitus are not fully understood. An enhanced lipid/non-esterified fatty acid oxidation could provide an explanation. To test this hypothesis we examined the relationship between glucose and lipid metabolism in 44 first-degree relatives (28 glucose-tolerant and 16 glucose-intolerant) of Type 2 diabetic patients and in 18 healthy control subjects. Total body glucose disposal was impaired among both glucose-tolerant and glucose-intolerant relatives compared with control subjects (36.3±3.8 and 30.4±2.7 vs 47.7±3.4 μmol · kgLBM/s-1· min−1; p 〈 0.05). The impairment in glucose disposal among the relatives was primarily accounted for by impaired non-oxidative glucose metabolism (14.8±3.0 and 12.5±1.8 vs 25.3±3.1 μmol · kgLBM−1 · min−1; p 〈0.05). Plasma non-esterified fatty acid concentrations were similar in both glucose-tolerant and glucose-intolerant relatives and control subjects (646±36,649±43 and 615±41 μmol/l) and showed the same degree of suppression by insulin (99±8, 86±7 and 84±9 μmol/l). Basal lipid oxidation was similar in all groups (1.29±0.09, 1.52±0.13 and 1.49±0.21 μmol · kgLBM−1· min−1). Furthermore, insulin suppressed lipid oxidation to the same degree in glucose-tolerant, glucose-intolerant relatives and control subjects (0.65±0.13, 0.88±0.15 and 0.59±0.09μmol · kgLBM−1 · min−1). An inverse correlation between plasma non-esterified fatty acid concentration and total body glucose disposal was observed in the group of control subjects (r=−0.540; p〈0.05), but not among the relatives (r=0.002; p=N.S.). In conclusion the present data challenge the view that the “glucose-fatty acid cycle” contributes to the insulin resistance seen in first-degree relatives of patients with Type 2 diabetes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; insulin resistance ; first-degree relatives ; islet amyloid polypeptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To study whether abnormal secretion of islet amyloid polypeptide is involved in the development of insulin resistance and impaired insulin secretion in Type 2 (noninsulin-dependent) diabetes mellitus, we measured islet amyloid polypeptide concentrations in 56 first-degree relatives of Type 2 diabetic subjects and in 10 healthy control subjects. Fasting islet amyloid polypeptide concentrations were similar in control subjects, glucose-tolerant and glucose-intolerant relatives (8±1, 9±1 and 11±2 fmol/ml; p=NS). The area under the islet amyloid polypeptide curve measured during an oral glucose load was larger in glucose-intolerant relatives (115±13 fmol/ml) compared to glucose tolerant relatives and control subjects (88±3 and 79±12 fmol/ml; p〈0.05). The insulin response during the oral glucose load was inversely correlated with the rate of glucose disposal measured during a euglycaemic hyperinsulinaemic clamp (r=−0.725; p〈0.01), while no significant correlation was observed between the corresponding values for islet amyloid polypeptide and glucose disposal (r=−0.380; p=NS). Hypersecretion of islet amyloid polypeptide is observed in glucose-intolerant first-degree relatives of patients with Type 2 diabetes. Since these patients are characterized by insulin resistance and abnormal first-phase insulin secretion, the putative role of islet amyloid polypeptide in the development of these abnormalities remains to be established. It is however, unlikely that islet amyloid polypeptide is involved in the development of insulin resistance as insulin-resistant relatives with normal glucose-tolerance showed normal islet amyloid polypeptide concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Genetics ; DNA polymorphism ; glucose ; phosphorylation ; glycolysis ; chromosome 2 ; insulin resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Type 2 (non-insulin-dependent) diabetes mellitus is characterized by decreased levels of glucose 6-phosphate in skeletal muscle. It has been suggested that the lower concentrations of glucose 6-phosphate contribute to the defect in glucose metabolism noted in muscle tissue of subjects with Type 2 diabetes or subjects at increased risk of developing Type 2 diabetes. Lower levels of glucose 6-phosphate could be due to a defect in glucose uptake, or phosphorylation, or both. Hexokinase II is the isozyme of hexokinase that is expressed in skeletal muscle and is responsible for catalysing the phosphorylation of glucose in this tissue. The recent demonstration that mutations in another member of this family of glucose phosphorylating enzymes, glucokinase, can lead to the development of Type 2 diabetes prompted us to begin to examine the possible role of hexokinase II in the development of this genetically heterogeneous disorder. As a first step, we have cloned the human hexokinase II gene (HK2) and mapped it to human chromosome 2, band p13.1, by fluorescence in situ hybridization to metaphase chromosomes. In addition, we have identified and characterized a simple tandem repeat DNA polymorphism in HK2 and used this DNA polymorphism to localize this gene within the genetic linkage map of chromosome 2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 35 (1992), S. 98-98 
    ISSN: 1432-0428
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; insulin resistance ; glucose transport ; genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To study whether insulin resistance in Type 2 (non-insulin-dependent) diabetes mellitus is due to a defect in the expression of the insulin-responsive glucose transporter gene (GLUT-4) in human skeletal muscle, we measured the level of GLUT-4 mRNA and (in some of the subjects) its protein in muscle biopsies taken from 14 insulin-resistant patients with Type 2 diabetes, 10 first-degree relatives of the diabetic patients and 12 insulin-sensitive control subjects. Insulin sensitivity was measured with a +45 mU· $${\text{m}}^{{\text{2}}^{{\text{ - 1}}} } $$ ·min−1 euglycaemic insulin clamp in combination with indirect calorimetry and infusion of [3-3H]glucose. GLUT-4 mRNA was measured using a human GLUT-4 cDNA probe and GLUT-4 protein with a polyclonal antibody specific for the 15 amino acid carboxyterminal peptide. Both Type 2 diabetic patients and their relatives showed impaired stimulation of total-body glucose disposal by insulin compared with control subjects (29.5±2.1 and 34.0±4.8 vs 57.9±3.1 μmol·kg lean body mass−1·min−1; p〈0.01). This impairment in glucose disposal was primarily accounted for by a reduction in insulin-stimulated storage of glucose as glycogen (13.0±2.4 and 15.6±3.9 vs 36.9±2.2 μmol·kg lean body mass−1·min−1; p〈0.01). The levels of GLUT-4 mRNA expressed both per μg of total RNA and per μg DNA, were higher in the diabetic patients compared with the control subjects (116±25 vs 53±10 pg/μg RNA and 177±35 vs 112±29 pg/μg DNA; p〈0.05, p〈0.01, respectively). The GLUT-4 mRNA levels in the relatives were not significantly different from that observed in the control subjects (90±16 pg/μg RNA and 117±23 pg/μg DNA; p = NS). The GLUT-4 protein levels did not significantly differ between control subjects, diabetic patients and relatives (494±85, 567±133 and 323±80 cpm/100 μg protein). No correlation was observed between the level of GLUT-4 mRNA andits protein. However, the level of GLUT-4 mRNA and the rate of total-body glucose disposal correlated positively in the control group and in the relatives (both p〈0.05) but not in the diabetic subjects. A positive correlation between the level of GLUT-4 protein and total-body glucose disposal was also observed in the control subjects (r = 0.759; p〈0.05) and in the relatives (r = 0.794; p〈0.01) but not in the diabetic subjects. We conclude that insulin resistance in Type 2 diabetes is not related to a defect in the expression of the GLUT-4 gene in skeletal muscle. Nevertheless, the levels of GLUT-4 mRNA and GLUT-4 protein are related to the rate of total-body glucose disposal in subjects with normal fasting glucose concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes ; hepatic glucose production ; insulin resistance ; non-esterified fatty acids ; nicotinic acid derivative
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To study the effect of changes in plasma non-esterified fatty acid concentration on suppression of hepatic glucose production by insulin eight Type 2 (non-insulin-dependent) diabetic patients participated in three euglycaemic, hyperinsulinaemic (108pmol · m2−1 · min−1) clamp studies combined with indirect calorimetry and infusion of [3-3H]-glucose and [1-14C]palmitate; (1) a control experiment with infusion of NaCl 154 mmol/l, (2) heparin was infused together with insulin, and (3) an antilipolytic agent, Acipimox, was administered at the beginning of the experiment. Six healthy volunteers participated in the control experiment. Plasma non-esterified fatty acid concentrations during the insulin clamp were in diabetic patients: (1) 151±36 μmol/1, (2) 949±178 μmol/l, and (3) 65±9 μmol/l; in healthy control subjects 93±13 μmol/l. Non-esterified fatty acid transport rate, oxidation and non-oxidative metabolism were significantly higher during the heparin than during the Acipimox experiment (p〈0.001). Suppression of hepatic glucose production by insulin was impaired in the diabetic compared to control subjects (255±42 vs 51±29 μmol/min, p〈0.01). Infusion of heparin did not affect the suppression of hepatic glucose production by insulin (231±49 μmol/min), whereas Acipimox significantly enhanced the suppression (21±53 μmol/min, p〈0.001 vs 154 mmol/l NaCl experiment). We conclude that insulin-mediated suppression of hepatic glucose production is not affected by increased non-esterified fatty acid availability. In contrast, decreased non-esterified fatty acid availability enhances the suppression of hepatic glucose production by insulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0428
    Keywords: Type 2 (non-insulin-dependent) diabetes mellitus ; insulin resistance ; hypertension ; lipids ; microalbuminuria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined the impact of hypertension and microalbuminuria on insulin sensitivity in patients with Type 2 (non-insulin-dependent) diabetes mellitus using the euglycaemic insulin clamp technique in 52 Type 2 diabetic patients and in 19 healthy control subjects. Twenty-five diabetic patients had hypertension and 19 had microalbuminuria. Hypertension per se was associated with a 27% reduction in the rate of total glucose metabolism and a 40% reduction in the rate of non-oxidative glucose metabolism compared with normotensive Type 2 diabetic patients (both p〈0.001). Glucose metabolism was also impaired in normotensive microalbuminuric patients compared with normotensive normoalbuminuric patients (29.4±2.2 vs 40.5±2.8 μmol · kg lean body mass−1 · min−1; p=0.012), primarily due to a reduction in non-oxidative glucose metabolism (12.7±2.9 vs 21.1±2.6 μmol · kg lean body mass−1 ·min−1; p=0.06). In a factorial ANOVA design, however, only hypertension (p=0.008) and the combination of hypertension and microalbuminuria (p=0.030) were significantly associated with the rate of glucose metabolism. The highest triglyceride and lowest HDL cholesterol concentrations were observed in Type 2 diabetic patients with both hypertension and microalbuminuria. Of note, glucose metabolism was indistinguishable from that in control subjects in Type 2 diabetic patients without hypertension and microalbuminuria (40.5±2.8 vs 44.4±2.8 μmol · kg lean body mass−1 · min−1). We conclude that insulin resistance in Type 2 diabetes is predominantly associated with either hypertension or microalbuminuria or with both.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0428
    Keywords: Insulin resistance ; glucose transport ; muscle ; insulin ; GLUT-4 ; NIDDM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined whether insulin resistance, i. e. impaired insulin stimulated glucose uptake in NIDDM patients and their first-degree relatives is associated with alterations in the effect of insulin on the expression of the GLUT-4 gene in skeletal muscle in vivo. Levels of GLUT-4 mRNA and protein were measured in muscle biopsies taken before and after a euglycaemic insulin clamp from 14 NIDDM patients, 13 of their first-degree relatives and 17 control subjects. Insulin stimulated glucose uptake was decreased in the diabetic subjects (19.8±3.0 μmol · kg LBM−1 · min−1, both p〈0.001) compared with control subjects (44.1±2.5 μmol · kg LBM−1 · min−1) and relatives (39.9±3.3 μmol · kg LBM−1 · min−1). Basal GLUT-4 mRNA levels were significantly higher in diabetic subjects and relatives compared to control subjects (99±8 and 108±9 pg/μg RNA vs 68±5 pg/μg RNA; both p〈0.01). Insulin increased GLUT-4 mRNA levels in all control subjects (from 68±5 to 92±6 pg/ug RNA; p〈0.0001), but not in the diabetic patients (from 99±8 to 90±8 pg/μg RNA, NS), or their relatives (from 94±9 to 101±11 pg/μg RNA, NS). In the relatives, individual basal GLUT-4 mRNA concentrations varied between 55 and 137 pg/μg RNA. Insulin-resistant (n=6, mean glucose uptake rate=30.6±3.4 μmol · kg LBM−1 · min−1) but not insulin-sensitive relatives (n=7, mean glucose uptake rate=47.4±3.2 μmol · kg LBM−1 · min−1) had higher basal GLUT-4 mRNA concentrations compared to control subjects (108±9 vs 68±5 pg/ug RNA, p〈0.01). GLUT-4 protein content in muscle did not differ between the groups in the basal state and remained unchanged in all groups after insulin infusion. Neither insulin-stimulated GLUT-4 mRNA nor protein concentrations correlated with insulin-stimulated glucose uptake in any of the groups studied. We conclude, that impaired glucose uptake in NIDDM is not related to insulin-stimulated GLUT-4 mRNA or protein concentrations. Acute stimulation of GLUT-4 mRNA by insulin is altered in skeletal muscle of NIDDM patients and their first-degree relatives. This might be a consequence of chronic hyperinsulinaemia elevating basal GLUT-4 mRNA concentrations rather than the cause of insulin resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0428
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0428
    Keywords: Basal metabolic rate ; Type 2 (non-insulin-dependent) ; diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To examine determinants of basal metabolic rate we studied 66 Type 2 (non-insulin-dependent) diabetic and 24 healthy age- and weight-matched control subjects with indirect calorimetry and infusion of [3H-3-] glucose. Eight Type 2 diabetic patients were re-studied after a period of insulin therapy. Basal metabolic rate was higher in Type 2 diabetic patients than in control subjects (102.8 ± 1.9 J · kg LBM−1-min−1 vs 90.7 ± 2.8 J · kg LBM−1;min−1; p〈0.01) and decreased significantly with insulin therapy (p 〈0.01). The basal rate of hepatic glucose production was higher in Type 2 diabetic patients than in control subjects (1044.0 ± 29.9 vs 789.3 ± 41.7 μmol/min; p 〈0.001) and decreased after insulin therapy (p 〈0.01). Hepatic glucose production correlated positively with basal metabolic rate both in Type 2 diabetic patients (r = 0.49; p 〈0.001) and in control subjects (r = 0.50; p〈0.05). Lipid oxidation was increased in Type 2 diabetic patients compared with control subjects (1.68 ± 0.05 vs 1.37 ± 0.08 μmol · kg LBM−1 · min−1'; p 〈0.01) and decreased significantly after insulin therapy (p 〈0.05). The rate of lipid oxidation correlated positively with basal metabolic rate both in Type 2 diabetic patients (r = 0.36; p 〈0.01) and in control subjects (r = 0.51; p 〈0.01). These data demonstrate that basal metabolic rate, rates of hepatic glucose production and lipid oxidation are interrelated in Type 2 diabetic patients. A reduction of the hepatic glucose production, however, is associated with a reduction in lipid oxidation, which in turn, may result in a reduction in basal metabolic rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...