Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Histochemistry and cell biology 94 (1990), S. 73-80 
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Paraffin-embedded sections from paraformaldehyde-fixed rat brain were stained immunocytochemically for glycogen phosphorylase brain isozyme BB, using a monoclonal mouse antibody and the biotin-streptavidin method, with either horseradish peroxidase or β-galactosidase as marker enzymes. Two cell types showed strong glycogen phosphorylase-immunoreactivity: Astrocytes and ependymal cells. Most intensive staining was observed in the cerebellar cortex, the neocortex and the hippocampus. Astrocytes in the cerebellar white matter stained positively. The choroid plexus cells stained poorly or not at all. Neurons throughout the brain were negative, as well as oligodendrocytes and bundles of myelinated nerve fibers. These data are consistent with the immunocytochemical localization of glycogen phosphorylase in astroglia-rich primary cultures derived from rat brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehydefixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-119X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Catalytic activity and immunoreactivity of glycogen phosphorylase were studied in pre- and postnatal rat brain. The catalytic activity was assayed in brain homogenates; immunoreactivity was investigated by immunoblot analysis using a monoclonal anti-bovine brain glycogen phosphorylase antibody. The cellular localization and intensity of immunoreactivity were analysed on paraffin-embedded sections utilizing the same monoclonal antibody. The catalytic activity increased 10-fold from embryonic day 16 to adult; immunoreactivity became detectable on embryonic day 16 and increased in intensity as the enzyme activity rose to adult values. The first cellular elements to be stained immunohistochemically were ependymal cells lining the ventricles, ependymal cells of the choroid plexus, meningeal cells and a selected population of neurons in the brain stem. The immunoreactivity of plexus cells and meningeal cells was reduced or absent in the adult rat brain. The earliest appearance of glycogen phosphorylase immunoreactivity in astroglial cells was seen at postnatal day 9 in the hippocampus. The staining pattern of the adult brain was reached at day 22 post partum. The developmental changes in glycogen deposition and in glycogen phophorylase activity and immunoreactivity may indicate a variable physiological role of glycogen metabolism for different cell types in the pre- and postnatal periods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...