Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 2669-2681 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Fully developed flow of an incompressible Newtonian fluid through a duct in which the orientation of the cross section is twisted about an axis parallel to an imposed pressure gradient is analyzed here with the aid of the penalty/Galerkin/finite element method. When the axis of twist is located within the duct, flow approaches limits at low and high torsion, the spatial frequency τ by which the duct is twisted. For small torsion, flow is nearly rectilinear and solutions approach previous asymptotic results for an elliptical cross section. For large torsion, flow exhibits an internal layer structure: a rotating circular-cylinder core with a nearly parabolic axial velocity profile, an internal layer of thickness τ−1 along the perimeter of the largest circular cylinder that can be inscribed in the duct, and nearly quiescent flow outside of the circular cylinder. The maximum rate of swirl in the core of a square duct is found to be at moderate torsion. The primary effect of inertia is an increase in pressure with distance from the axis, due to centrifugal acceleration. When the duct is offset from the axis of twist, inertia leads to one, two, or three primary vortices without apparent bifurcation of steady states, although stability of steady flows is lost beyond detected Hopf points.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 23 (1993), S. 121-139 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Considerable controversy has been generated by the observation that the Earth's climate has warmed over the last century. Public policy decisions hinge on the question of whether this trend is natural climate variability or the result of the increase in atmospheric concentrations of greenhouse gases. The strength of the enhanced greenhouse effect depends, in large part, on the uncertain value of climate sensitivity. In this paper climate sensitivity is estimated from the global temperature record by assuming models for greenhouse forcing, climate response to forcing, and climate variability. We find optimal estimates of climate sensitivity are remarkably insensitive to assumptions, at least for forcing excluding the effect of aerosols, and these values are considerably less than most predictions arising from General Circulation Models (GCM's). It is, however, the statistical significance of these estimates that is sensitive to assumptions about climate variability. Assuming climate variability with a time scale of a decade or less, climate sensitivity is estimated to be significantly greater than zero, but also significantly lower than that predicted by GCM's. Climate variability with a century time scale is consistent with both the recent temperature record and the pre-instrumental record for the last millenium; if this type of variability is assumed, the estimate of climate sensitivity has a confidence band wide enough to encompass both zero and typical values obtained by GCM's. With century time-scale variability it will be several decades before confident estimates can be made.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 1265-1269 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...