Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 36 (1993), S. 3259-3270 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: Several renumbering strategies for unstructured grids are discussed. They lead to a minimization of eache-misses and an optimal grouping of elements for different computer platforms, from superscalar workstations to multiprocessor register-to-register vector machines. Timings for a typical computational fluid dynamics (CFD) code that employs these renumbering strategies indicate that CPU requirements may be halved by applying them. The renumbering strategies discussed are all of linear time complexity, making them ideally suited for applications requiring frequent mesh changes. Furthermore, these renumbering strategies are not only valid for element-based codes but carry over to edge-based or face-based field solvers.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 37 (1994), S. 3571-3580 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new ray-tracing technique is presented which does not work with ray-object intersections per se, but is based on the traversal of an unstructured tetrahedral mesh providing a convex enclosure of a scene of polyhedral objects. The tetrahedral mesh provides tight bounding and an adaptive subdivision of space. This non-hierarchical data structure is traversed adaptively until one is led directly and unconditionally to the first object intersected. Rendering times are directly related to the average thickness of the enclosing mesh since all tetrahedra are traversed in constant time.Since the proposed algorithm operates directly with volume elements, it allows for volumetric rendering effects. Volume rendering or anisotropic media can be implemented without any further effort. This is an important advantage as compared to usual techniques, which only operate on surface data.Timings for several examples show that the use of this type of ray-tracing technique, which is more suitable for general purpose visualization codes than traditional techniques, results in CPU times that are comparable with the best ray-tracing techniques presently used. This is an unexpected and important result, as the vectorization and parallclization of the proposed technique are straightforward, in contrast with traditional ray-tracing techniques.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 14 (1992), S. 1407-1419 
    ISSN: 0271-2091
    Keywords: Adaptive mesh refinement ; Finite elements ; Compressible flow ; Transient problems ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: An adaptive finite element scheme for transient problems is presented. The classic h-enrichment/coarsening is employed in conjunction with a tetrahedral finite element discretization in three dimensions. A mesh change is performed every n time steps, depending on the Courant number employed and the number of ‘protective layers’ added ahead of the refined region. In order to simplify the refinement/coarsening logic and to be as fast as possible, only one level of refinement/coarsening is allowed per mesh change. A high degree of vectorizability has been achieved by pre-sorting the elements and then performing the refinement/coarsening groupwise according to the case at hand. Further reductions in CPU requirements arc realized by optimizing the identification and sorting of elements for refinement and deletion. The developed technology has been used extensively for shock-shock and shock-object interaction runs in a production mode. A typical example of this class of problems is given.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...