Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Peripheral nerve ; Morphometry ; Diabetes mellitus ; Hypomyelination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The relative changes in the growth and maturation of axon size and myelin thickness were studied in the medial plantar division of the tibial nerve in the lower leg and in the motor branches of the tibial nerve to the calf muscles in rats in which diabetes mellitus had been induced with streptozotocin at the time of weaning. Observations were made at 6 weeks and 3, 6, 9 and 12 months of diabetes for comparison with age-matched controls. Similar changes were observed in both nerves. Growth in body weight and skeletal growth was severely retarded from the time of induction of diabetes but at the 6-week stage axon size was not reduced, suggesting that neural growth may initially be relatively protected. At later stages axon size was consistently reduced in the diabetic animals as compared with the controls and showed an absolute reduction at 12 months, as compared with 9 months, that was greater than in the controls. Myelin thickness became reduced earlier and was more severely affected than axon size so that the fibers were relatively hypomyelinated. The myelin changes were greater in larger than in smaller fibers. The index of circularity of axons was reduced in the diabetic nerves. These results show that induction of diabetes in prepubertal rats produces effects on peripheral nerve fibers which differ from those resulting from diabetes induced in adult animals. The effects also differ between large and small nerve fibres. These observations may explain some of the disparate findings obstained in previous studies on experimental diabetes in rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 85 (1993), S. 362-369 
    ISSN: 1432-0533
    Keywords: β Amyloid ; Acetylcholinesterase ; Butyrylcholinesterase ; Diffuse plaques ; Preamyloid deposits
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The colocalization of β amyloid protein with the enzymes acetyl- and butyrylcholinesterase was assessed using immunocytochemistry for β amyloid protein and a sensitive histochemical technique for cholinesterases. In non-demented aged and Alzheimer's disease brains, double-stained sections for cholinesterases and thioflavin-S showed that all thioflavin-S-positive plaques were also positive for cholinesterases, indicating the presence of these enzymes in all plaques with β-pleated amyloid protein. When amyloid angiopathy was present, cholinesterases were also observed in amyloid-laden vessels walls. Comparison of series of adjacent sections alternatively stained for acetylcholinesterase, β amyloid protein and butyrylcholinesterase, as well as by double histo-immunocytochemical staining, showed either cholinesterase in a proportion of the preamyloid diffuse plaques. These data indicate that cholinesterases are associated with the amyloid protein from very early stages, when the β-pleated structure is being formed. Novel functions attributed to acetyl- and butyrylcholinesterase, such us their proteolytic activity either by themselves or in association with heparan sulfate proteoglycans, may play a role in the aggregation or the consolidation processes taking place at the early stages of diffuse plaque formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Peripheral nerve morphometry ; Axons ; Myelin ; Growth changes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Morphometric observations have been made on the medial plantar division of the tibial nerve (MPD) and on the motor branches of the tibial nerve to the calf muscles (MBC) in rats ranging in age from weaning (3 weeks) to 12 months. Axon size, assessed by measurements of circumference and cross-sectional area, increased rapidly until 3 months with further slight increases between 3 and 9 months and a slight fall between 9 and 12 months. Axon size distributions were unimodal throughout in the MPD but bimodal for the MBC except at 3 weeks. Distributions of myelin thickness were bimodal throughout for both nerves. Scatter plots of g ratios (axon diameter: total fibre diameter) confirmed the presence of two fibre populations: a group of small fibres with relatively thin myelin sheaths, and a group of larger fibres within which sheath thickness was relatively less on the larger than on the smaller axons. These two fibres populations were less easily separable in the MBC than in the MPD nerves. These results document morphometrically the normal growth changes in the rat tibial nerve and also provide control data for the analysis of the effects of experimental procedures on the growth and maturation of peripheral nerve fibres.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 87 (1994), S. 284-292 
    ISSN: 1432-0533
    Keywords: Key words: Acetylcholinesterases – Butyrylcholinesterase – Tau protein – Tangle – Degenerated neurites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Acetylcholinesterase and butyrylcholinesterase have been associated with structures undergoing neurofibrillary degeneration, as well as with all types of senile plaques, in non-demented aged and Alzheimer's brains. At the electron microscope level, the reaction product of both enzymes, appeared to decorate paired helical filaments, straight filaments and βA4 amyloid fibrils. Recent studies showed that cholinesterases were associated with amyloid at early stages, e.g., in diffuse plaques. In the present study, the interrelationship of cholinesterases to structures undergoing neurofibrillary degeneration was analyzed further. Tau immunoreactivity was compared to the staining pattern observed with the two esterases. Double protocols consecutively performed on the same sections, and counterstaining with thioflavin-S, confirmed the presence of cholinesterases in all structures with neurofibrillary degeneration. The conclusion that cholinesterases consistently colocalize with both neurofibrillary bundles and βA4 amyloid fibrils at all stages of their accumulation, allows us to speculate on the possible role that these enzymes may play in either the formation or the consolidation of fibrillary aggregates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 87 (1994), S. 284-292 
    ISSN: 1432-0533
    Keywords: Acetylcholinesterase ; Butyrylcholinesterase ; Tau protein ; Tangle ; Degenerated neurites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Acetylcholinesterase and butyrylcholinesterase have been associated with structures undergoing neurofibrillary degeneration, as well as with all types of senile plaques, in non-demented aged and Alzheimer's brains. At the electron microscope level, the reaction product of both enzymes, appeared to decorate paired helical filaments, straight filaments and βA4 amyloid fibrils. Recent studies showed that cholinesterases were associated with amyloid at early stages, e.g., in diffuse plaques. In the present study, the interrelationship of cholinesterases to structures undergoing neurofibrillary degeneration was analyzed further. Tau immunoreactivity was compared to the staining pattern observed with the two esterases. Double protocols consecutively performed on the same sections, and counterstaining with thioflavin-S, confirmed the presence of cholinesterases in all structures with neurofibrillary degeneration. The conclusion that cholinesterases consistently colocalize with both neurofibrillary bundles and βA4 amyloid fibrils at all stages of their accumulation, allows us to speculate on the possible role that these enzymes may play in either the formation or the consolidation of fibrillary aggregates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...