Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Material
Years
Year
  • 1
    ISSN: 1572-8838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Porous electrodes are required to achieve satisfactory performance of the aqueous sulphide/polysulphide redox couple in energy conversion and storage applications. A flow cell for testing flow-through porous electrodes was constructed and operated. The effects of electrode material, temperature, flow rate, and electrolyte composition were studied. Catalytic electrode surface layers of Co and MoS2 demonstrated performances which were more than adequate to meet a design goal of 10–20 mA cm−2 at less than 50mV overpotential. Flow rate variation had only a small effect on the current density-overpotential behaviour, whereas raising the temperature and/or adding dimethylformamide to the electrolyte had much larger effects. These observations are consistent with steady-state results obtained on rotating disc electrodes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 22 (1992), S. 1039-1048 
    ISSN: 1572-8838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract The addition of Ca(OH)2 to the zinc electrode of Zn/KOH/NiOOH cells was investigated in order to determine its effect on the rate of zinc active material redistribution (shape change) and cell cycle-life performance. Cells of equal mass and capacity, and therefore the same specific energy, containing 0, 10, 25, and 40 mol% Ca(OH)2 in their zinc electrodes were constructed and tested. The Ca(OH)2 and Zn(OH) 4 2− -supersaturated KOH solution formed a calcium-zincate complex during the discharge half-cycle. The solubility of this complex is less than that of ZnO, and the lower zinc species solubility leads to a slower rate of Zn redistribution, thereby extending the cell cycle life. The best cells tested were those with 25%-Ca(OH)2 electrodes, which lost capacity at a rate of 0.13%/cycle, compared to 0.47%/cycle in calcium-free control cells constructed in the same manner. Also, zinc active material utilization in the calcium-containing electrodes showed a dramatic improvement, compared to the calcium-free zinc electrodes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...