Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Freezing resistance mechanisms were studied in five endemic Hawaiian species growing at high elevations on Haleakala volcano, Hawaii, where nocturnal subzero (°C) air temperatures frequently occur. Extracellular freezing occurred at around -5°C in leaves of Argyroxiphium sandwicense and Sophora chrysophylla, but these leaves can tolerate extracellular ice accumulation to -15°C and -12°C, respectively. Mucilage, which apparently acted as an ice nucleator, comprised 9 to 11% of the dry weight of leaf tissue in these two species. Leaves of Vaccinium reticulatum and Styphelia tameiameiae were also found to tolerate substantial extracellular freezing. Dubautia menziesii, on the other hand, exhibited the characteristics of permanent supercooling; a very rapid decline in liquid water content associated with simultaneous intracellular and extracellular freezing. However, in those species that tolerate extracellular freezing, the decline in liquid water content during freezing is relatively slow. Osmotic potential was lower at pre-dawn than at midday in four of the species studied. Nocturnal production of osmotically active solutes may have helped to prevent intracellular freeze dehydration as well as to provide non-colligative protection of cell membranes. Styphelia tameiameiae supercooled to -9·3°C and tolerated tissue freezing to below -15°C, a unique combination of physiological characteristics related to freezing. Tolerance of extracellular ice formation after considerable supercooling may have resulted from low tissue water content and a high degree of intracellular water binding in this species, as determined by nuclear magnetic resonance studies. The climate at high elevations in Hawaii is relatively unpredictable in terms of the duration of subzero temperatures and the lowest subzero temperature reached during the night. It appears that plants growing in this tropical alpine habitat have been under selective pressures for the evolution of freezing tolerance mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stomatal regulation of transpiration was studied in hedgerow coffee (Coffea arabica L.) at different stages of canopy development encompassing a range of leaf area indices (L) from 0·7 to 6·7. Stomatal (gs) and crown (gc) conductance attained maximum values early during the day and then declined as both leaf-to-bulk air water vapour mole fraction difference (Va) and photosynthetically active photon flux density (I) continued to increase. Covariation of environmental variables during the day, particularly V, I, and wind speed (u), obscured stomatal responses to individual variables. This also caused diurnal hysteresis in the relationship between gc and individual variables. Normalization of gs and gc by I removed the hysteresis and revealed a strong stomatal response to humidity. At the crown scale, transpiration (E) increased linearly with net radiation (Rn) and seemed to increase with increasing wind speed. Increasing wind speed imposed higher leaf interior to leaf surface water vapour mole fraction differences (Vs) at given levels of Va. However, strong relationships between declining gc and E and increasing wind speed were obtained when gc and E were normalized by I and Rn, respectively, without invoking additional potential interactions involving temperature or CO2 concentration at the leaf surface. Apparent stomatal responses to wind were thus at least partially a reflection of the stomatal response to humidity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Since its introduction in the late 19th century, the so-called cohesion theory has become widely accepted as explaining the mechanism of the ascent of sap. According to the cohesion theory, the minimum standing vertical xylem tension gradient should be 0·01 MPa m−1. When transpiration is occurring, frictional resistances are expected to make this gradient considerably steeper. The results of numerous pressure chamber measurements reported in the literature are generally regarded as corroborating the cohesion theory. Nevertheless, several reports of pressure chamber measurements in tall trees appear to be incompatible with predictions of the cohesion theory. Furthermore, the pressure chamber is an indirect method for inferring xylem pressure, which, until recently, has not been validated by comparison against a direct method. The xylem pressure probe provides a means of testing the validity of the pressure chamber and other indirect techniques for estimating xylem pressure. We discuss here the results of concurrent measurements made with the pressure chamber and the xylem pressure probe, particularly recent measurements made at the top of a tall tropical tree during the rainy season. These measurements indicate that the pressure chamber often substantially overestimates the tension previously existing in the xylem, especially in the partially dehydrated tissue of droughted plants. We also discuss other evidence obtained from classical and recent approaches for studying water transport. We conclude that the available evidence derived from a wide range of independent approaches warrants a critical reappraisal of tension-driven water transport as the exclusive mechanism of long-distance water transport in plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Hydraulic conductance was measured on leaf and stem segments excised from sugarcane plants at different stages of development. Maximum transpiration rates and leaf water potential (ΨL) associated with maximum transpiration were also measured in intact plants as a function of plant size. Leaf specific hydraulic conductivity (Lsc) and transpiration on a unit leaf area basis (E) were maximal in plants with approximately 0.2 m2 leaf area and decreased with increasing plant size. These changes in Fand Lsc were nearly parallel, which prevented φL in larger plants from decreasing to levels associated with substantial loss in xylem conductivity caused by embolism formation. Coordination of changes in E and leaf hydraulic properties was not mediated by declining leaf water status, since φL increased with plant size. Hydraulic constrictions were present at nodes and in the node-leaf sheath-leaf blade pathway. This pattern of constrictions is in accord with the idea of plant segmentation into regions differing in water transport efficiency and would tend to confine embolisms to the relatively expendable leaves at terminal positions in the pathway, thereby preserving water transport through the stem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stomatal control of crown transpiration was studied in Anacardium excelsum, a large-leaved, emergent canopy species common in the moist forests of Central and northern South America. A construction crane equipped with a gondola was used to gain access to the uppermost level in the crown of a 35-m-tall individual. Stomatal conductance at the single leaf scale, and transpiration and total vapour phase conductance (stomatal and boundary layer) at the branch scale were measured simultaneously using the independent techniques of porometry and stem heat balance, respectively. This permitted the sensitivity of transpiration to a marginal change in stomatal conductance to be evaluated using a dimensionless coupling coefficient (1-ω) ranging from zero to 1, with 1 representing maximal stomatal control of transpiration. Average stomatal conductance varied from 0.09 mol m−2 s−1 during the dry season to 0.3 mol m−2 s−1 during the wet season. Since boundary layer conductance was relatively low (0.4 mol m−2 s−1), 1-ω ranged from 0.46 during the dry season to only 0.25 during the wet season. A pronounced stomatal response to humidity was observed, which strongly limited transpiration as evaporative demand increased. The stomatal response to humidity was apparent only when the leaf surface was used as the reference point for measurement of external vapour pressure. Average transpiration was predicted to be nearly the same during the dry and wet seasons despite a 1 kPa difference in the prevailing leaf-to-air vapour pressure difference. The patterns of stomatal behaviour and transpiration observed were consistent with recent proposals that stomatal responses to humidity are based on sensing the transpiration rate itself.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Gas exchange data obtained with wellventilated leaf cuvettes provide clear evidence of a stomatal response to leaf-air vapour pressure difference (V). In contrast, remotely sensed leaf temperatures with specific assumptions regarding canopy boundary layer characteristics, have been interpreted to mean that stomata do not respond to V. We address this apparent discrepancy in a sugarcane field by simultaneous application of a single-leaf, porometric technique and a whole-canopy, Bowen ratioenergy balance technique. These methods indicated significant stomatal response to V in well-irrigated sugarcane. Stomatal responses to V in the field were obscured by strong covariance of major environmental parameters so that opening responses to light and closing responses to V tended to offset each other. Low boundary layer conductance significantly uncoupled V at the leaf surface (Vs) from V determined in the bulk atmosphere (Va). This reduced the range of the stimulus, Vs, thereby reducing the range of the stomatal response, without indicating low stomatal sensitivity to V. Stomatal responses to Va may be smaller than expected from V response curves in cuvettes, since Vs rather than the conventionally measured Va is analogous to V in a well-stirred cuvette. Recently published conclusions that remotely sensed canopy temperatures are inconsistent with stomatal response to V may be based on erroneous estimates of canopy boundary layer conductance and thus of Vs, use of air saturation deficit rather than V to express evaporative demand, and investigation at higher levels of evaporative demand than those eliciting maximal stomatal response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 13 (1990), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Stomatal conductance per unit leaf area in well-irrigated field- and greenhouse-grown sugarcane increased with leaf area up to 0.2 m2 plant 1, then declined so that maximum transpiration per plant tended to saturate rather than increase linearly with further increase in leaf area. Conductance to liquid water transport exhibited parallel changes with plant size. This coordiantion of vapour phase and liquid phase conductances resulted in a balance between water loss and water transport capacity, maintaining leaf water status remarkably constant over a wide range of plant size and growing conditions. The changes in stomatal conductance were not related to plant or leaf age. Partial defoliation caused rapid increases in stomatal conductance, to re-establish the original relationship with remaining leaf area. Similarly, pruning of roots caused rapid reductions in stomatal conductance, which maintained or improved leaf water status. These results suggest that sugarcane stomata adjusted to the ratio of total hydraulic conductance to total transpiring leaf area. This could be mediated by root metabolites in the transpiration stream, whose delivery per unit leaf area would be a function of the relative magnitudes of root system size, transpiration rate and leaf area.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Carbon isotope ratio ; Gas exchange ; Metrosideros ; Nitrogen-use efficiency ; Water-use efficiency ; Bog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Carbon isotope composition, photosynthetic gas exchange, and nitrogen content were measured in leaves of three varieties of Metrosideros polymorpha growing in sites presenting a variety of precipitation, temperature and edaphic regimes. The eight populations studied could be divided into two groups on the basis of their mean foliar δ13C values, one group consisting of three populations with mean δ13C values ca.-26‰ and another group with δ13C values ca.-28‰. Less negative δ13C values appeared to be associated with reduced physiological availability of soil moisture resulting from hypoxic conditions at a poorly drained high elevation bog site and from low precipitation at a welldrained, low elevation leeward site. Gas exchange measurements indicated that foliar δ13C and intrinsic wateruse efficiency were positively correlated. Maximum photosynthetic rates were nearly constant while maximum stomatal conductance varied substantially in individuals with foliar δ13C ranging from-29 to-24‰. In contrast with the patterns of δ13C observed, leaf nitrogen content appeared to be genetically determined and independent of site characteristics. Photosynthetic nitrogenuse efficiency was nearly constant over the range of δ13C observed, suggesting that a compromise between intrinsic water- and N-use efficiency did not occur. In one population variations in foliar δ13C and gas exchange with leaf cohort age, caused the ratio of intercellular to atmospheric partial pressure of CO2 predicted from gas exchange and that calculated from δ13C to be in close agreement only in the two youngest cohorts of fully expanded leaves. The results indicated that with suitable precautions concerning measurement protocol, foliar δ13C and gas exchange measurements were reliable indicators of potential resource use efficiency by M. polymorpha along environmental gradients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Argyroxiphium sandwicense ; Energy balance ; Heat tolerance ; Leaf pubescence ; Silversword
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of leaf pubescence and rosette geometry on thermal balance were studied in a subspecies of a Hawaiian giant rosette plant, Argyroxiphium sandwicense. This species, a member of the silversword alliance, grows above 2000 m elevation in the alpine zone of two Hawaiian volcanoes. Its highly pubescent leaves are very reflective (absorptance in the 400–700 nm waveband=0.44). Temperature of the expanded leaves was very similar to, or even lower than, air temperature during clear days, which was somewhat surprising given that solar radiation at the high elevation sites where this species grows can exceed 1100 W m−2. However, the temperature of the apical bud, which is located in the center of the parabolic rosette, was usually 25°C higher than air temperature at midday. Experimental manipulations in the field indicated that incoming solar radiation being focussed towards the center of the rosette resulted in higher temperatures of the apical bud. Attenuation of wind speed inside the rosette, which increased the thickness of the boundary layer surrounding the apical bud, also contributed to higher temperatures. The heating effect on the apical bud of the large parabolic rosette, which apparently enhances the rates of physiological processes in the developing leaves, may exclude the species from lower elevations by producing lethal tissue temperatures. Model simulations of apical bud temperatures at different elevations and laboratory estimates of the temperature threshold for permanent heat injury predicted that the lower altitude limit should be approximately 1900 m, which is reasonably close to the lower limit of distribution of A. sandwicense on Haleakala volcano.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...