Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 118 (1994), S. 109-114 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The growth of the salt marsh periwinkleLittoraria irrorata (collected from Sapelo Island, Georgia in 1991, initial shell length 6.2 to 11.5 mm) on various diets was measured. Growth was highest on a diet of standing-dead leaves ofSpartina alterniflora. Periwinkles provided with marsh sediment, yellow-green, sterile, or bacteria-colonized leaves lost organic mass. Fungal-colonized leaves and pure mycelia of fungi common on standing-dead leaves allowed intermediate growth. Growth onS. alterniflora-based diets was negatively correlated with the phenolics content of the food, and positively correlated with its lipid content. No correlation was found between growth and protein content. The digestibility ofS. alterniflora leaves, estimated with the acid-insoluble ash technique, was highest when yellow-green leaves were used. Colonization by fungi or bacteria caused it to decline. ForS. alterniflora-based diets, growth rates were positively correlated with the amount of time spent on the food.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dying leaves ofSpartina alterniflora Loisel (hereafterSpartina) do not undergo abscission and consequently are at least partially degraded while remaining attached to the shoot, i.e., under conditions which may be very different from those occurring in litterbags used to measure decomposition ofSpartina at the sediment surface. Attached living and dead leaves in high-marsh areas are subject to grazing by the abundant gastropodLittorina irrorata Say (hereafterLittorina), a salt marsh periwinkle. In 1986, nitrogen assimilation from living and standing-deadSpartina byLittorina was examined in Sapelo Island (Georgia, USA) salt marshes by labelling plants with the stable nitrogen isotope15N and measuring the transfer into grazing snails in the field. The initial label of ca 8% total plant nitrogen declined to ca 1% over 5 mo, perhaps due to label dilution by less enriched nitrogen taken up and translocated from below- to above-groundSpartina biomass. Snails incorporatedSpartina-derived nitrogen into tissues at rates equal to 10 to 20% of total snail nitrogen 30-d−1 in summer and fall, and 2 to 5% 30-d−1 in winter. In the absence of measurable growth, these high nitrogen incorporation rates may indicate a large reproductive effort, or substantial turnover of somatic tissue nitrogen. The annual total assimilation ofSpartina-derived nitrogen was equal to theLittorina-nitrogen biomass. Assimilation of nitrogen in the presence of livingSpartina material (dead material removed) was reduced substantially below that in the presence of intact plants (living and dead material present).Littorina populations at abundances found in Georgia would assimilate ca 3.4% of above-groundSpartina-nitrogen production annually in high-marsh, short-Spartina areas. Based on preliminary estimates of nitrogen assimilation efficiency, 13.2 to 27.2% of short-Spartina production could be ingested annually by Georgia populations ofLittorina. Most of this ingestion would be concentrated in the summer and early fall, when monthly ingestion could equal 100% of deadSpartina biomass. The impact of grazing byLittorina onSpartina decomposition may be greatest on these early-senescing leaves. Grazing may have little impact on the early stages of decomposition of the bulk of the shoots that senesce later in fall, but may be important in the later stages of decomposition of dead shoots that persist through winter until the following spring and summer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...