Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: During plasmolysis of onion epidermal cells, the contracting protoplast remains connected to the cell wall by an intricate, branched system of plasma membrane (PM) ‘Hechtian strands’ which stain strongly with the fluorescent probe DiOC6. In addition, extensive regions of the cortical endoplasmic reticulum (ER) network remain anchored to the cell wall during plasmolysis and do not become incorporated into the contracting protoplast with the other cell organelles. These ER profiles become tightly encased by the PM as the latter contracts towards the centre of the cell. Thus, although the cortical ER is left outside the main protoplast body, it is nonetheless still bound by the PM of the cell. As well as being anchored to the wall, the cortical ER remains intimately linked with plasmodesmata and retains continuity between cells via the central desmotubules which become distended during plasmolysis. The PM also remains in close contact with the plasmodesmatal pore following plasmolysis. It is suggested that plasmodesmata, although sealed, may not be broken during plasmolysis, their substructure being preserved by continuity of both ER and PM through the plasmodesmatal pore. A structural model is presented which links the behaviour of PM, ER and plasmodesmata during plasmolysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 180 (1990), S. 555-561 
    ISSN: 1432-2048
    Keywords: Allium ; Apoplast ; Endocytosis (fluidphase) ; Epidermis ; Plasmolysis/deplasmolysis ; Vesicle (endocytic)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A transient plasmolysis/deplasmolysis (plasmolytic cycle) of onion epidermal cells has been shown to induce the formation of fluid-phase endocytic vesicles. Plasmolysis in the presence of the membrane-impermeant fluorescent probes Lucifer Yellow CH (LYCH) and Cascade Blue hydrazide resulted in the uptake of these probes by fluid-phase endocytosis. Following deplasmolysis, many of the dye-containing vesicles left their parietal positions within the cell and underwent vigorous streaming in the cytoplasm. Vesicles were observed to move within transvacuolar strands and their movements were recorded over several hours by video-microscopy. Within 2 h of deplasmolysis several of the larger endocytic vesicles had clustered around the nuclear membrane, apparently lodged in the narrow zone of cytoplams surrounding the nucleus. In further experiments LYCH was endocytically loaded into the cells during the first plasmolytic cycle and Cascade Blue subsequently loaded during a second plasmolytic cycle. This resulted in the introduction of two populations of endocytic vesicles into the cells, each containing a different probe. Both sets of vesicles underwent cytoplasmic streaming. The data are discussed in the light of previous observations of fluid-phase endocytosis in plant cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Enzyme activity (potato tuber) ; Sink isolation (sugar uptake) ; Solatium (tuber) ; Starch synthesis ; Sugar transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Import into potato (Solarium tuberosum L. cv. Record) tubers was terminated by removing the sink at its connection with the stolon. The ability of discs of storage tissue from the excised tubers to take up exogenous sugars and convert them to starch was compared with that of discs from untreated tubers from the same plant population. In rapidly-growing control tubers, glucose and fructose were taken up to a greater extent than sucrose, 77% of the glucose being converted to starch within 3 h (compared with 64% and 27% for fructose and sucrose, respectively). These values fell as the tubers aged but the ranking (glucose 〉 fructose 〉 sucrose) was maintained, emphasising a severe rate-limiting step following the import of sucrose into the growing tuber. Sink isolation had little effect on the ability of the storage cells to take up exogenous sucrose across the plasmalemma for up to 7 d after sink isolation. However, the ability of the same cells to convert the sucrose to starch was severely inhibited within 24 h, as was the sensitivity of starch synthesis to turgor. In the case of glucose, sink isolation inhibited both the uptake and the conversion to starch, the latter being inhibited to a greater degree. A detailed metabolic study of tubers 7 d after excision showed that, with sucrose as substrate, 94% of the radioactivity in the soluble sugar pool was recovered in sucrose following sink isolation (92% in control tubers). However, with glucose as substrate, 80% of the radioactivity was recovered as sucrose following tuber excision (28% in control tubers), providing evidence that sucrose synthesis acts as a major alternative carbon sink when starch synthesis is inhibited. In the same tubers, sucrose-synthase activity decreased by 70% following sink isolation, compared with a 45% reduction in ADP-glucose pyrophosphorylase. Activities of UDP-glucose pyrophosphorylase, starch phosphorylase, starch synthase nd both PPi- and ATP-dependent phosphofructokinases remained unchanged. Acid-invertase activity increased fivefold.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Nicotiana (transport, virus) ; Plasmodesma ; Symplast (transport) ; Transport (symplast) ; Virus (intercellular spread)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The molecular weight exclusion limit of plasmodesmata in subveinal epidermal cells of Nicotiana clevelandii (Gray) leaves was estimated by microinjection and fluorescence microscopy using fluorescein isothiocyanate-peptide conjugates, carboxyfluorescein and Lucifer Yellow CH. The largest fluorochrome which moved symplastically between cells had a molecular weight of 749, although movement did not appear to depend purely on molecular weight parameters. Systemic infection of plants by tobacco rattle tobravirus, tomato black ring nepovirus or potato Y potyvirus did not alter the limits of plasmodesmatal conductance of the fluorochromes. However, carrot mottle umbravirus and groundnut rosette umbravirus diminished the symplastic mobility of some fluorescent tracers. These results imply that intercellular movement of these viruses does not involve a long-lasting increase in the plasmodesmatal molecular size exclusion limit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...